

VISION AND MISSION OF THE INSTITUTE

Vision Statement:

To create a collaborative academic environment to foster professional excellence and ethical values

Mission Statement:

- 1. To develop outstanding professionals with high ethical standards capable of creating and managing global enterprises
- 2. To foster innovation and research by providing a stimulating learning environment
- 3. To ensure equitable development of students of all ability levels and backgrounds
- 4. To be responsive to changes in technology, socio-economic and environmental conditions
- 5. To foster and maintain mutually beneficial partnerships with alumni and industry

VISION AND MISSION OF THE DEPARTMENT

Pune -

Vision Statement:

To develop proficient IT engineers for the Industry and Society.

Mission Statement:

- 1. To achieve academic excellence.
- 2. To develop students for being competent in dynamic IT environment.

niet.

- 3. To encourage research and innovation.
- 4. To inculcate moral and professional ethics.

PEO's OF THE DEPARTMENT

- 1. Demonstrate sustained learning by building the profound foundation of math's, science and engineering principles and make the students erudite self-reliant and adaptable to diverse culture of multidisciplinary environment.
- 2. Prepare graduate with strong knowledge and skills in the field of Information Technology to develop solutions of complex engineering problems.
- 3. To bring leadership skill with teamwork in continuous learning environment to bear with professional challenges.
- 4. To inculcate ethics towards issues of professional and social relevance.

PSO's OF THE DEPARTMENT

- 1. Graduate exhibits skills to analyze, design and develop software.
- 2. Graduate demonstrate technical competency and leadership qualities to work in multidisciplinary environment.

Modern College of Engineering

PROGRAM OUTCOMES

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
 Problem analysis: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

LONG TERM GOALS

- 1. To Improve Industry Collaboration.
- 2. Promote Faculty for Research.
- 3. To Introduce Post Graduates Programme and Research Center.
- 4. To Enhance Infrastructure and lab development.

SHORT TERM GOALS

1. To enhance teaching learning process with effective utilization of e-resources

Moodle

Kahoot.

G-Suite

- Activity Based Teaching.
- Online Courses. (NPTEL/Spoken Tutorials)

Microsoft-Team

- 2. To organize national level conference / workshop.
- 3. Focused Interaction with Alumni.

Moc

Forum for Career Guidance

Guidelines for Training and Placements

Expert /Webinar/Seminar Suggestions on Programme Improvisation

Pune - 5 *

INDEX

Sr.	Contents	Page No.
No.		
1.	Student Academic Calendar	VI
2.	Student Co Curricular Activity	VIII
	Calendar	TTAHUI 44 IN
3.	Time table (Division A &B)	IX & X
4.	Course Structure	
5.	Important Instructions	XII
6.	Term Work Evaluation Criteria	ХШ
7.	Practical Exam Evaluation Criteria	XIV
	1447	< (2015 101

Sr.	Contents	e de la calega de	Page No.							
No.	101 6	DM	LDCO	DSA	OOP	BCN	LDCOL	DSAL	OOPL	SSL
1.	Syllabus	2	30	57	117	136	157	165	178	195
2.	Course Outcome	5	32	60	119	138	158	167	181	201
3.	Prerequisites	6	33	61	120	139	159	1	182	202
4.	Teaching Plan	7	34	62	121	140	160	168	183	203
5.	Tutorial Questions		-	-	Y	-	/	-		-
6.	Unit wise Question Bank	14	46	69	128	147	-/	-	-	-
7.	Unit wise Home Assignment	26	52	82	132	153	÷	•	-	-
8.	Question Bank (MCQs)			86		14	- 0	Ł	-	-
9.	Practical Practice Questions	1	ln	¢		2		1	186	-
10.	Oral question Bank		-	-		-	161	169	188	204
11.	Additional Resources	28	55	0	134	155	ine	arin	193	-

These are tentative dates, subject to change. ** Exam form submission, SE Online Examination, TE, BE In-Semester Examination, Theory Examination will be scheduled as per Savitribai Phule Pune University notification. HOD

Department of Information Technology

STUDENT ACADEMIC CALENDAR

STUDENT CO CURRICULER ACTIVITY CALENDAR

Sr	Date	Name of activity	Durat	Mapping	Guest speaker	Ben	Faculty In
No			ion	with PO's	with	efici	charge
•				and PSO's	Designation	arie	
					and	S	
					Organization		
			ITSA:]	Ms. Poonam Ra	ıkibe		
1	5/07/2021	TE ,BE	1 Hr		All Internal	TE,	Ms.Supriya
		Orientation	_	DUZ	faculties	BE	Jagtap
		Programme		$, \cup \cup \langle$	12 2.		
2	24/8/2021	SE Orientation	1 Hr		All Internal	SE	Ms.Supriya
		Programme			faculties	\sim	Jagtap
3	01/09/202	Tech-Aarambha,	1 Hr	PO8, 12,	Mr. Nagesh	SE	Mrs. Sampada
	1 /	Day # 1 : IT		PSO2	Rajopadhye,	8	Kulkarni
	/ \	Industry -	<	1111	Accenture, Pune	19	D \ .
	- 10	Changes Due to	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	501	~	\mathbb{N}	~
	- 12	Covid	(d	TIM	0	1	
4	02/09/202	Tech-Aarambha,	1 Hr	PO10, 12,	Mrs. Vaidehi	SE	Mrs. Sampada
	1 -	Day # 2 : Soft	U.N.	PSO2	Banergee, Asst.		Kulkarni
		Skills -	Contraction of the second	- 677	Prof., I2IT, Pune		P P P
		Offline/Online		N 76			
5	03/09/202	Tech-Aarambha,	1 Hr	PO5,12,	Mr. Tushar	SE	Mrs. Sampada
	- \ C	Day # 3 : Python :	\sim	PSO1,2	Kute, MiTu	1.	Kulkarni
	\"	The Application	~		Technologies,	/	N/
		Oriented		100	Pune		/
	0.4./00./2022	Approach	<u>, C</u> ,	DO0.12			
6	04/09/202	Tech-Aarambha,	l Hr	PO8,12,	Mr. Yash	SE	Mrs. Sampada
	1	Day # 4 : SKy 1s		PSO 2	Gandni, SE at	×.	Kulkarni
		Mindeat of	D.		Persistent	r (.	
		Minuset of Drogramming	- L	ne	Systems	- N	
7	5/00/2021	Toochore Dov	1 Ur		All Internal	Intor	Mc Doonom
/	5/09/2021	Teachers Day	1 1 11		focultion	nol	Palziba
	- I M	odern U	OIIE	ae or	Taculties	Facu	Rakibe
						lties	0
8	15/09/202	Engineers Day	1 Hr	PO6	All Internal	FF S	Ms Poonam
0	1	Engineers Day	1 1 11	100	faculties	ЕТ	Rakibe
	Ĩ				incutico	E R	Tuniou
						E E	
		<u> </u>	op Club:	Mr. Deenak T	amhane	-	
		11					

9	28/8/2021	Session on "app	2 Hrs	PO 1,2,3,4,	Mr. Sachin	TE,	Deepak
		development		10,11,12	Magdum.	BE	Tamhane
		using python"			Cybage pvt ltd		
					Pune		
1	11/9/2021	Session in	2 Hrs	PO 1,2,3,4,	Sakshi	TE	Deepak
0		AngularJS		10,11,12	Kshatriya,	BE	Tamhane
		5.1	31-	1991.3	Alumni		
		GraphiX Clu	b: Ms. P	oonam Rakibe /	/ Mrs.Ketki Gawal	li	
1	28/08/202	Session on"	2 Hrs	PO5,10,12,P	Mr.Ganesh	FE,S	Ms.Poonam
1	1	Introduction to		SO1,2	Mune,BMW,Pu	E,T	Rakibe
		Game Engines"			ne	E,B	
		1.91			~	Е	
	/	Pixl	Insight C	Club: Mrs. Suha	sini Bhat	V	
1	04/00/202	Callaga	1 11-	PO 7 0 10	Drof Dr Mro S D	EE C	Ma Subacini
$\frac{1}{2}$	04/09/202 1	Exhibition Nature	1 m	PO 7,9,10	FI0I.DI.MIS.S.D	гс,з Е Т	Rhat
2	123	at its best	1.1	-1 FLH	Deshnande	E,I F R	Dhat
	- 10	at its best	1	1123	Destipance	E,D	\cap
	18	A	ıdit Cou	rse: Mrs. Ketki	Gawali	-	
1	14/08/202	Japanese Module-	_12	PO 9,10,12,	Mrs.Amita	SE	Mrs.Ketki M
3	1 1	ч\ —) н	Hrs	PSO-2	Godse	1	Gawali
	10	61 C			Director at Sun	1.4	-1
	1		~		and Sands	/	N/
	· \			0	Advisers Co.		/
			C	~~~~	Ltd. Pune	_	/
1	10.12/00/	III II O I	2	DOC 0 12	MD	7712	M D' ''
	12,13/08/	Udyojak :Session		PO6,9,12,	Mr.Rajesh	IE, DE	Mr.Digvijay
4	2021	011 Entrepreneurship	nis	F301,2	Namase Owner Produer	DE	Fatti
		Development	<u> </u>	me .	Pune	~	· · · · · · · · · · · · · · · · · · ·
	_	Development,			Prakash Manage		-
	- I M	odorn C	olle	no of	Virtuethink.	oría	1/1
	141	oueni o	OTIE	sye or	Pune	2111	9
1	1/8/2021	Japanese Module-	-12	PO 9,10,12,	Mrs.Amita	TE	Mrs.Ashwini
5		III	Hrs	PSO-2	Godse		Bhamre
					Director at Sun		
					and Sands		
					Advisers Co.		
					Ltd.Pune		

1	1/9/2021	Aptitude Session	2 Hrs	PO 1,2,3,6,12	Internal	SE	Mr.Deepak
6		1		PSO 1 2	Faculties		Tamhane
1	26/8/2021	Session on	3 Hrs	PO 6,7	Mr.Ashok	BE	Mr.Rohit Tate
7		"Green			Pattar,		
		Computing"			IT Trainer, Pune		
		CSI: M	rs. Vand	ana Dixit/ Ms. A	Asmita Pawar		
1	17/8/2021	Webinar Series	6 Hrs	PO 1,2,4,5,	Ms. Asawari	TE,	Ms. A. L.
8	24/8/2021	on " Artificial	Series	12,	Kakne	BE,	Devkar,
	28/8/2021	Intelligence-		PSO1,2	Sprinker ltd,	Hon	Mrs. Ketki
		Machine			Gurgaon	our	Gawali,
		Learning"			Mr. Tushar Kute	$\langle a \rangle$	Ms. Mukta
		651			MiTu Skillogies,	V	Jamage,
		67/	1	AN	Pune		Mrs. V. G. Dixit
	- 1 A	27	~	K A Y	Mr. Vivek	ΛŪ	1
	14	5/	1	니머니	Deshpande	- \ (\cap
	10	SI /	1		AI Adventures,	- 11	1
	10	11 18	$H \leq 1$		Pune	- 1	O_1
1	4/9/2021	Webinar Series	6 Hrs	PO6,7,12,	Mr. Uday	TE,	Mrs. V. G. Dixit
9	11/9/2021	on "Cyber	Series	PSO1,2	Mathapati, TCL,	BE,	Mr. Deepak
	18/9/2021	Security"	51	N 62	Pune	Hon	Tamhane
	10		$\subset \langle$	NY7	Mr. Mahesh	our	
	14	- / -	~	2 1	Patil	1."	</th
					Semantic Pune	/	1
			~		Mr. Ashok		/
			- C.		Pattar		1
		~ + ~			IT Trainer, Pune	_/	
2	18/9/2021	Guest lecture on	1Hr	PO5, 12	Mr.Sangram	BE	Ms.Yogita
0		Business	ρ_{i}	PSO-1,2	Nawale,	1	Fatangare
		Intelligence tools	u	me .	Bitwise		· · · · · · · · · · · · · · · · · · ·
	_	and Applications			Solutions Pune		
	M	ACM: Mi	rs. Ashwi	ini Bhamre/ Ms	. Asmita Pawar	orie	nal
2	21/8/2021	Session on Data	2 Hrs	PO1,5,7,12P	Mr.Aniket	TE,	Ms.Asmita
1		Visualisation tool	the F	SO1,2	Sawhney,	BE	Pawar,
				91110-0	Earnst and		Mrs.Ashwini
					Young		Bhamre
		ISR/NSS: M	r.Deepal	k Tamhane/ Mr	s. Tanmayee Kute		
			-		-		

2	22/08/202	IT awareness	1 Hr	PO 6,7,9	Mr.Deepak	Scho	Mr.Deepak
2	1				Tamhane/	ol	Tamhane/ Mrs.
					Mrs. Tanmayee	Stud	Tanmayee Kute
					Kute	ents	
		Proje	ct Activi	ities: Mrs. Vana	adana Dixit		
2	14,21,22,2	Project Review -	5	PO1,2,3,5,9,1	Mr. Mahesh	BE	Mrs. V. G. Dixit
3	8,29/08/20	1 \\	Days	0	Deshpande,		Ms. Anita
	21	2-2-	- F	v u c	Cognizant, Pune		Devkar
		11	2 2		Mr. Mahesh		
		- / N	and the second s		Gawali	1	
		1.91			AVOMA	14	
	1	651			Technologies	V	<u></u>
2	11.12,18,1	Project Review-2	6	РО	Mr. Mahesh	BE	Mrs. V. G. Dixit
4	9,25,26/9/	27	Days	2,3,4,5,8,9	Deshpande,	ΛU	Ms. Anita
	21	5/	/	거머니	Cognizant, Pune	1	Devkar
	10	1 1	\square	1 1 1 24	Mr. Mahesh	1	-
		1 /8	≥ 10	I I E7	Gawali	1	C 2 1
			~_		AVOMA		
				12	Technologies		
2	28/8/2021	TE Seminar	2	PO 1,2,9,12	Internal	TE	Ms.Yogita
5	10	Activities	Days	NY7	Faculties	1	Fatangare
	14	-\ C	~	2 1	Ø/	1.	Ms. Deepali
			The second		ć	/	Bhanage Naik
		Soft Skill Traini	ing and l	Placement (T&l	P): Mrs. Ketki Gav	wali	1
2	29/6/2021	MCOE-Pre	2 Hrs	PO12	Mr.Vinay	BE	Mrs.Ketki
6	to	Placement	+40Hr		Raikar ,Campus	1	MGawali
	24/7/2021	Training session-	S 		Credential	1	
		by campus	trainin	ino.	. 5 /	1	
	22/7/2021	credential	g	III C		DE	
2	23/1/2021	Pre Placement	1 Hr	-	-	BE	Mrs.Ketki
/	- M	Talk by Persistent	olle	to an	Engino	orie	Gawali
		Company		ALC UI	L I G III G		19
	10 10/00/2	E.	D Activi	ues:Mr. Digvij	ay Patil		N D' ''
2	12,13/08/2	Udyojak :Session	2	PO6,9,12,	Mr.Rajesh		Mr.Digvijay
8	021	on E	Hrs	PS01,2	Namase	TE,	Patil
		Entrepreneurship			Owner Produer,	BE	
		Development,			Pune		
					Prakash Manage		

					Virtuethink,		
					Pune		
		Career Guidance/	Compet	itive Examinati	ons: Mrs. Ketki G	awali	
2	9/10/2021	How to	1 Hr	PO12	Mr.Sumit	TE,	Mrs.Ketki
9		apply/prepare for			Achaye, The	BE	Gawali
		Higher studies	-	तारगो (Gate Academy		
		511	, m	: Mrs.V.G.Dixit	191.7		
3	21/8/2021	Workshop on	1 Day	PO1,3,5, 12	Mr. Viraj	Facu	Mrs. V. G. Dixit
0		"Website		PSO 1,2	Shelar,	lties	
		development"			KingSprout	&	
		10.00			Pune	Stud	
		1.21			~	ents	
3	25/9/21	Session on	2 Hrs	PO3,4,5,12	Mr. Viresh	BE	Mrs. V. G.
1	/	Python & PHP	<	PSO 1,2	Chapate	10	Dixit,
	10	21	2	5 6 8	Persistent Pune	NY	Ms. Mukta
	1.24	S. /	1	- 11	Chan,	1	Jamage
	Industrial Visit: Mr.Deepak Tamhane						
	NIL						
	FDP: Ms. Yogita Fatangare						
3	23,24,	Workshop on Art	- 3	PO 8,9,12	Dr.Mr.Parikshit	Facu	Ms.Deepali
2	&25/9/202	of Technical	Days	PSO 2	Mahalle,SKN	lties	Bhanage Naik
	- 1\ 💭	Writing	~	1 1 5	CoE Pune	and	-1
			~~~~		Dr.	Stud	1/
	\			CC	Mrs.K.R.Joshi,	ents	/
			- C		PES's MCOE		/
		ノトン			Dr.Mrs.Ambika	1	
					Pawar,	1	
			$\rho_{i}$		Symbiosis	- N.	
		$\sim$	_ 4	me .	Institute of	· · · · ·	· · · · · · · · · · · · · · · · · · ·
	_		-		Technology,		
2	4/10/2021	EDD on "Data	5	PO	Pune Mr. Tuchor	Econ	Mac Swonno
3	4/10/2021	FDF oli Data	Dave	1234512	Kute Mr. Vivek	Ltios	Bhaysar
5	9/10/2021	Selence	Days	PSO 1 2	Patil	nics	Ms Anita
	)/10/2021			1501,2	MiTu		-Devkar
					Skillologies		201 Mui
					Pune		
					Mr. Yogesh		
					Murumkar,		
L			I	1	· · · · · ·	I	

	r						
					Bharat Soft		
					Solutions		
					Dr. Mahesh		
					Sanghavi,		
					Principal at		
			and the second division of the second divisio		SNJB COE,		
		5.5	175	1911	Chandwad		
		Alumni Contribut	ion: Mrs	. Tanmayee Ku	ıte/ Mrs.Vishnu Ka	amble	
		~	. C	DU			
3	9/7/2021	Guest session on	1 Hr	PO 9,10,12	Mr. Yash	BE	Mrs. Tanmayee
4		" Importance of	and the second designed to the second designed and the	PSO 2	Gandhi,	Sec. 1.	Kute
		Internship and			Persistent Pvt	$\sim$	Mr. Vishnu
		Job opportunities			Ltd, Pune	15	Kamble
	/	through			N	se .	N
		internship"	$\leq$	11	L	19 /	27
3	10/7/2021	Importance of	1 Hr.	PO11,12	Mr. Ajay Pawar,	BE	~
5	1.7	Elective Subjects	1 1	PSO2	Atos Pvt Ltd,	1	
	- 10	in IT industry	1	1183	Pune	- \	$\sim$
3	17/7/2021	Guest session on	1 Hr.	PO	Ms. Shivani	SE,T	111
6		" Explore	C. Secondari	1,2,3,11,12	Jamdade,	E,B	Property lies
	1.00	JavaScript"	1	PSO 1,2	Michelin	Е	111
	14	-1 5	$\sim$ J	1 6/2	Pune	1	

# HOD

Department of Information Technology

# Modern College of Engineering

'un

大

## TIME TABLE SE A

DAY \ TIME	10.00 to 10.45	10.45 to 11.30	11.30 to 12.15	12.15 to 1.00	1.00 to 1.45	1.45 to 2.30	2.30 to 3.15	
MON	DSAL 'A DSAL 'B OOPL ' OOPL	A' (SAK) J' (KMG) C' (RS) D' (SP)	OOPL LDCOL DSAL 'O SSL 'I	'A' (SP) 'B' (MJ) C' (SAK) O' (SB)	17	BCN (JJ)	DM (SP)	
TUE	OOPL OOPL	C' (RS) D' (SP)	DSA (SAK)	LDCO (TK)	FR	BCN (JJ)		
WED	SSL 'A OOPL' DSAL 'C LDCOL	A' (SB) 'B' (SP) C' (SAK) 'D' (TK)	OOP (SP)	LDCO (TK)	RECESS	BCN (JJ)	DM (SP)	
тни	OOPL SSL 'E LDCOL DSAL 'I	'A' (SP) 3' (SB) 'C' (TK) D' (SAK)	DSA (SAK)	OOP (SP) DSAL 'A' (SAK) DSAL 'B' (KMG)				
FRI	DSA (SAK)	OOP (SP)	LDCO (TK)	DM (SP)		LDCOL OOPL SSL 'C DSAL 'I	'A' (MJ) 'B' (SP) C' (SB) D' (SAK)	
DAY \ TIME	10.00 to 10.45	10.45 to 11.30	11.30 to 12.15	12.15 to 1.00		X		
SAT	Audit Course - Japanese Language			of En	gine	ering	1	
			GFM : - Ms. T	anmayee Kute				
	Name of	the Subject		Teach	ing Staff &	Seating Arrang	ement	
DM : Discr	ete Mathematics			SP : Mr. Shantanu Pawar				
LDCO : Lo	gic Design & Co	omputer Organiza	tion	TK : Ms. Tanmayee Kute				
DSA : Data	Structures and A	Algorithms		SAK : Mrs. Sar	npada Kulk	arni		
OOP : Obje	ect Oriented Prog	ramming		SP : Mr. Shantanu Pawar				

BCN : Basics of Computer Network	JJ : Ms. Jyoti Jadhav
SSL : Soft Skills Lab	SB : Ms. Suhasini Bhat
LDCOL : Logic Design and Computer Organization Lab	TK : Ms. Tanmayee Kute MJ : Mrs. Mukta Jamage
DSAL : Data Structures and Algorithms Lab	SAK : Mrs. Sampada Kulkarni KMG : Mrs. Ketki Gawali
OOPL : Object Oriented and Programming Lab	RS : Ms. Rajashri Sadafule SP : Mr. Shantanu Pawar



DAY \ TIME	10.00 to 10.45	10.45 to 11.30	11.30 to 12.15	12.15 to 1.00	1.00 to 1.45	1.45 to 2.30	2.30 to 3.15	
MON	DSAL SSL 'B' SSL 'C DSAL	'A' (SJ) (AAB) C' (PR) 'D' (JJ)	DM (VGD)	DSA (SJ)	/	OOP (AAB)	LDCO (PR)	
TUE	DSAL DSAL OOPL 'C SSL T	DSAL 'A' (SJ) DSAL 'B' (JJ) OOPL 'C' (AAB) SSL 'D' (PR) BCN (JJ) LDCO			H	DSA (SJ)	DM (VGD)	
WED	OOPL 'A LDCOL DSAL OOPL '	A' (AAB) 'B' (PR) 'C' (JJ) D' (DP)	BCN (JJ)	LDCO (PR)	CO (PR) RECESS OOP (AAB) DM (VGD			
тни	OOPL 'A DSAL LDCOL OOPL '	A' (AAB) 'B' (JJ) 'C' (PR) D' (DP)	BCN (JJ)	OOP (AAB) DSA (SJ)				
FRI	LDCOL OOPL 'I OOPL 'C DSAL	'A' (PR) B' (SSB) C' (AAB) 'D' (JJ)	SSL 'A OOPL 'I DSAL LDCOL	A' (AAB) 'B' (SSB) L 'C' (JJ) L 'D' (PR)				
DAY \ TIME	10.00 to 10.45	10.45 to 11.30	11.30 to 12.15	12.15 to 1.00	~->			
SAT	Audit Course - Japanese Language	Th Co	une lege	of En		erino	7	
	e e nar tañ tar i		GFM : - Ms. S	upriya Jagtap	<u></u>			
-	Name of	the Subject	: Pune	Teach	ing Staff &	Seating Arrang	gement	
DM : Discr	ete Mathematics			VGD : Mrs. Va	ndana Dixit			
LDCO:Lo	gic Design & Co	omputer Organiza	ation	PR : Ms. Poonam Rakibe				
DSA : Data	Structures and A	Algorithms		SJ : Ms. Supriya Jagtap				
BCN : Basi	cs of Computer	Network		JJ: Ms. Ivoti I	nwini Bham adhay	пе		

SSL : Soft Skills Lab	AAB : Mrs. Ashwini Bhamre, PR : Ms. Poonam Rakibe
LDCOL : Logic Design and Computer Organization Lab	PR : Ms. Poonam Rakibe
DSAL : Data Structures and Algorithms Lab	SJ : Ms. Supriya Jagtap, JJ : Ms. Jyoti Jadhav
OOPL : Object Oriented and Programming Lab	AAB : Mrs. Ashwini Bhamre SSB : Mrs. Swapna Bhavsar DP : Mr. Digvijay Patil



#### **COURSE STRUCTURE**

	Savitribai Phule Pune University													
	Second Year of Information Technology Engineering(2019 Course)													
	(With effect from Academic Year 2020-21)													
	Semester-III													
Course Code	Course Name	Te S (Hou	eachir chem urs/W	ng ie /eek)	Đ	kamin	nation Ma	Sche arks	me a	nd		Cre	dit	
			Practical	Tutorial	IN-Sem	End-Sem	TW	R	OR	Total	Ħ	R	TUT	Total
<u>214441</u>	Discrete Mathematics	03	-	01	30	70	25	-	-	125	03		01	04
Logic Design and 214442 Computer Organization		03	-	-	30	70	-	-	-	100	03	-	-	03
<u>214443</u>	Data Structures and Algorithms	03	-	-	30	70	-	-	-	100	03	-	•	03
<u>214444</u>	Object Oriented Programming	03	-	-	30	70	-	-	-	100	03	-	-	03
<u>214445</u>	Basics of Computer Network	03	-	-	30	70	-	-	-	100	03	-	-	03
Logic Design 214446 Computer Organization Lab		-	02	-	-	-	25	25	-	50	-	01		01
214447 Data Structures and Algorithms Lab		-	04	-	-	-	25	25	-	50	-	02	-	02
<u>214448</u>	Object Oriented Programming Lab	-	04	-	-	-	25	25	-	50	-	02	-	02
214449	Soft Skill Lab	-	02	-	-	-	25	-	-	25	-	01	-	01
214450 Mandatory Audit Course 3		-	-	-	-	-	-	-	-	-	Non Credit		-	
	Total	15	12	01	150	350	125	75		700	15	06	01	22
Abbreviations:														

TH: Theory TW: Term Work

PR: Practical

OR: Oral TUT: Tutorial

Note: Students of S.E. (Information Technology) can opt any one of the audit course from the list of audit courses prescribed by BoS (Information Technology)

#Mandatory Audit Course 3:

214450A- Ethics and values in IT 214450B - Quantitative Aptitude and Logical Reasoning 214450C- Language Study- Japanese- Module 214450D-Cyber Security and Law

## **IMPORTANT INSTRUCTIONS**

- 1. It is essential that the student attends all classes in time from the first day to the last day of each term.
- Minimum of 75% attendance for lectures and practical sessions is mandatory for all students.
- In case the attendance falls below 75%, term will not be granted and the student will not be allowed to appear for the University examination
- 4. Student should complete term work such as Journals, Files as per schedule. If the student fails to complete the term work to the entire satisfaction of the Head of the Department his/her term will not be granted and he/she will not be allowed to appear for the University examination.
- 5. Attendance to all class tests or internals exams is compulsory.
- 6. Students are always required to carry Identity card (duly signed by Authority) everyday to college and shall show the same on demand by any faculty/official of the Institute in the campus.
- 7. Students are advised to maintain good rapport with classmates and staff.
- 8. Institute uniform is compulsory on specified days, during University examinations, for internal tests and special functions decently dressed on the other days of the week.

# Modern College of Engineering

## TERM WORK EVALUATION CRITERIA

Final term work will be given based on throughout performance of the student. 100 marks are distributed in (60 for continuous assessment + 15 for internal test result + 5 for general behavior + 20 for attendance of student)

 60 marks shall be awarded to the students, based on their journal work, which includes experiment's write up, program print out. Each assignment should be evaluated for 10 marks.

• Distribution of 10 marks for each assignment is as follows:

S	Sr. No.	Head	Marks
/ i.	27	Coding standards, proper indentation, Comments,	2 Marks
22	-/	Documentation	101
ii.		Timely submission	3 Marks
iii	i.	Test cases / originality / Understanding of Assignment	5 Marks
1.1		A THE HEILS	

- 15 marks shall be allotted based on the marks of Class test/ Assessment test per unit/ mock exam.
- 5 marks for General Behavior.
- 20 Marks as per the college policy for Term Work, marks are to be awarded for attendance as per the below, based on the percentage of attendance per subject, combining lectures and practical's together, wherever applicable.

States and

	Sr .No.	%of attendee=total(Lectures + Practical's attended)	Marks
N	Inde	90 to 100	20
	2	85to<90	16
_	3	80to<85	12
	4	75 to <80	10

## **EXAM EVALUATION CRITERIA**

**University Examination** 

Phase I Online examination of 25 marks, 30 minutes duration, containing objective- multiple choice questions (MCQ) and fill in blanks; based on unit I and unit II of the subject
Phase II Online examination of 25 marks, 30 minutes duration, containing objective- multiple choice questions (MCQ) ) and fill in blanks; based on unit III and unit IV of the subject
University Practical Examination of 50 marks oral/ practical duration 3 hr, contain problem statement based on assignment submitted as term work during lab hours Each chit will have 3 problem statements

• Every student will pick up one chit randomly and will perform one

- assignment/experiment out of three written on his/her chit.
- Practical examination will be based on the term work.
- Oral examination (if applicable i.e. in case of Oral as a separate passing head)
- will be based on journal and theory syllabus
- Questions will be asked during the practical examination to judge the
- understanding of the practical performed in the examination

Note: student will be allowed for university practical examination only when, all types of assignments given by respective staff and Satisfying attendance criteria

**Phase III Written examination** of 50 marks, 2 hours duration; based on all the six units, shall be conducted at the end of semester, as per the schedule of the university.

#### Internal Examination

### MCQ Test 1

Test of 25 marks, 30 minutes duration, containing objective- multiple choice questions (MCQ) and fill in blanks; based on unit I and unit II of the subject.

### MCQ Test 1

Test of 25 marks, 30 minutes duration, containing objective- multiple choice questions (MCQ) and fill in blanks; based on unit I and unit II of the subject

* Pune - 5 *



## **SYLLABUS**

Teaching Scheme: TH:03Hours/Week       Credits: 04       In-Semester: 30 Marks End-Semester: 70Marks Term Work: 25 Marks         Prerequisite:       1. if any: Basic Mathematics       Term Work: 25 Marks         Course Objectives:       1. To gain sound knowledge to formulate and solve problems with sets and propositions.       2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.         3. To understand Graph and Tree terminologies and models to be applied in real life problems.       4. To recognize types of relation, formulate and solve problems with relations and functions.         5. To understand basics of number theory and its applications.       6. To understand basics of number theory and its applications.         CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.       CO2: Analyze and evaluate the combinatorial problems by using probability theory.         CO3: Apply the concepts of graph theory to devise mathematical models.       CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application.       CO6 is identify fundamental algebraic structures.         UNIT - I       Sets And Propositions       (06 hrs + 2 hrs Tut)         Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions:       Propositions       Applications of Sets and Propo		214441 : Discrete Mathemati	cs
TH:03Hours/Week       End-Semester: 70Marks         TUT:01Hours/Week       Term Work: 25 Marks         Prerequisite:       1. if any: Basic Mathematics         Course Objectives:       1. To gain sound knowledge to formulate and solve problems with sets and propositions.         2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.       3. To understand Graph and Tree terminologies and models to be applied in real life problems.         4. To recognize types of relation, formulate and solve problems with relations and functions.       5. To understand basics of number theory and its applications.         6. To understand basics of number theory and its applications.       6. To understand the various types' algebraic structures and solve the problems with logical reasoning.         CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.       CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models.         CO4: Analyze types of relations and functions to provide solution to computational problems.       (06 hrs + 2 hrs Tut)         Sts: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions:       Propositions of Sets and Propositions         Mutisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions:       Propos	Teaching Scheme:	Credits: 04	In-Semester : 30 Marks
TUT:01Hours/Week       Term Work: 25 Marks         Prerequisite:       1. if any: Basic Mathematics         Course Objectives:       1. To gain sound knowledge to formulate and solve problems with sets and propositions.         2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.         3. To understand Graph and Tree terminologies and models to be applied in real life problems.         4. To recognize types of relation, formulate and solve problems with relations and functions.         5. To understand basics of number theory and its applications.         6. To understand the various types' algebraic structures and its applications.         6. To understand the various types' algebraic structures and its applications.         COL: Formulate and apply formal proof techniques and solve the problems with logical reasoning.         CO2: Analyze and evaluate the combinatorial problems by using probability theory.         CO3: Apply the concepts of graph theory to devise mathematical models.         CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application.         CO6: Identify fundamental algebraic structures.         UNT - 1       Sets And Propositions         Vests: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Prop	TH:03Hours/Week		<b>End-Semester: 70Marks</b>
Prerequisite:         1. if any: Basic Mathematics         Course Objectives:         1. To gain sound knowledge to formulate and solve problems with sets and propositions.         2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.         3. To understand Graph and Tree terminologies and models to be applied in real life problems.         4. To recognize types of relation, formulate and solve problems with relations and functions.         5. To understand basics of number theory and its applications.         6. To understand the various types' algebraic structures and its applications.         CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.         CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models.         CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application.         CO6: Identify fundamental algebraic structures.         UNIT - 1       Sets And Propositions         Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions: Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions         Mappi	TUT:01Hours/Week		Term Work: 25 Marks
1. if any: Basic Mathematics         Course Objectives: <ul> <li>1. To gain sound knowledge to formulate and solve problems with sets and propositions.</li> <li>2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.</li> <li>3. To understand Graph and Tree terminologies and models to be applied in real life problems.</li> <li>4. To recognize types of relation, formulate and solve problems with relations and functions.</li> <li>5. To understand basics of number theory and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> </ul> <li>Conse Outcomes:         <ul> <li>On completion of the course, students will be able to-</li> <li>CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory.</li> <li>CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify fundamental algebraic structures.</li> </ul> </li> <li>UNIT - 1 Sets And Propositions (06 hrs + 2 hrs Tut)</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I - (CO1)</li> <li>U</li>	Prerequisite:	नायमया क	
Course Objectives:         1. To gain sound knowledge to formulate and solve problems with sets and propositions.         2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.         3. To understand Graph and Tree terminologies and models to be applied in real life problems.         4. To recognize types of relation, formulate and solve problems with relations and functions.         5. To understand basics of number theory and its applications.         6. To understand the various types' algebraic structures and its applications.         7. To completion of the course, students will be able to         CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.         CO2: Analyze and evaluate the combinatorial problems by using probability theory.         CO3: Apply the concepts of graph theory to devise mathematical models.         CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application.         CO6: Identify fundamental algebraic structures.         UNIT -1       Sets And Propositions         Propositions: Propositions and Exclusion, Mathematical Induction.         Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions.         Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Proposit	1. if any: Basic Mathematic	×s	9 1.7
<ol> <li>To gain sound knowledge to formulate and solve problems with sets and propositions.</li> <li>To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.</li> <li>To understand Graph and Tree terminologies and models to be applied in real life problems.</li> <li>To recognize types of relation, formulate and solve problems with relations and functions.</li> <li>To understand basics of number theory and its applications.</li> <li>To understand the various types' algebraic structures and its applications.</li> <li>To understand the various types' algebraic structures and its applications.</li> <li>To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes:</li> <li>On completion of the course, students will be able to-CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I- (CO1)</li> <li>UNIT – II Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combi</li></ol>	Course Objectives:	- DUG	
<ul> <li>propositions.</li> <li>2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.</li> <li>3. To understand Graph and Tree terminologies and models to be applied in real life problems.</li> <li>4. To recognize types of relation, formulate and solve problems with relations and functions.</li> <li>5. To understand basics of number theory and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes:</li> <li>On completion of the course, students will be able to-CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6 Iterity fundamental algebraic structures.</li> <li>UNIT - I Sets And Propositions (06 hrs + 2 hrs Tut)</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I- (CO1)</li> <li>UNIT - I Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combinations.</li> <li>Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.</li> </ul>	1. To gain sound knowle	dge to formulate and solve prob	blems with sets and
<ul> <li>2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.</li> <li>3. To understand Graph and Tree terminologies and models to be applied in real life problems.</li> <li>4. To recognize types of relation, formulate and solve problems with relations and functions.</li> <li>5. To understand basics of number theory and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes:         <ul> <li>On completion of the course, students will be able to-CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory.</li> <li>CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of New Applications.</li> <li>Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> </ul> </li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions. Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications o</li></ul>	propositions.	C F - C	A.2->-
a. To understand Graph and Tree terminologies and models to be applied in real life problems.         4. To recognize types of relation, formulate and solve problems with relations and functions.         5. To understand basics of number theory and its applications.         6. To understand the various types' algebraic structures and its applications.         7. To recognize types of relation, formulate and solve problems with relations and functions.         6. To understand basics of number theory and its applications.         6. To understand the various types' algebraic structures and its applications.         Course Outcomes:         On completion of the course, students will be able to-         CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.         CO2: Analyze and evaluate the combinatorial problems by using probability theory.         CO3: Apply the concepts of graph theory to devise mathematical models.         CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Princip	2. To understand and sol	ve counting problems by apply	ing elementary counting
<ul> <li>3. To understand Graph and Tree terminologies and models to be applied in real life problems.</li> <li>4. To recognize types of relation, formulate and solve problems with relations and functions.</li> <li>5. To understand basics of number theory and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes:</li> <li>On completion of the course, students will be able to-CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory.</li> <li>CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify fundamental algebraic structures.</li> <li>UNIT - I</li> <li>Sets And Propositions</li> <li>(06 hrs + 2 hrs Tut)</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I- (CO1)</li> <li>UNIT - II</li> <li>Combinatorics And Discrete Probability</li> <li>(06 hrs + 2 hrs Tut)</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combinations.</li> <li>Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.</li> <li>Mapping of Course Outcomes for Unit II- (CO2)</li> </ul>	techniques to solve probl	ems of discrete probability.	
<ul> <li>A. To recognize types of relation, formulate and solve problems with relations and functions.</li> <li>5. To understand basics of number theory and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes: <ul> <li>On completion of the course, students will be able to</li> <li>CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory.</li> <li>CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify fundamental algebraic structures.</li> </ul> </li> <li>UNIT - 1 Sets And Propositions (06 hrs + 2 hrs Tut)</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I- (CO1)</li> <li>UNIT - II Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combinations.</li> <li>Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.</li> </ul>	3. To understand Graph a	and Tree terminologies and mo	dels to be applied in real life
<ul> <li>4. To recognize types of relation, formulate and solve problems with relations and functions.</li> <li>5. To understand basics of number theory and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes:         <ul> <li>On completion of the course, students will be able to-CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6. Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of structures.</li> </ul> </li> <li>UNIT - I Sets And Propositions (06 hrs + 2 hrs Tut)</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I- (CO1)</li> <li>UNIT - II Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combinations.</li> <li>Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.</li> <li>Mapping of Course Outcomes for Unit II- (CO2)</li> </ul>	problems.	1.6. 6. 1.6. 1.1	
<ul> <li>5. To understand basics of number theory and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes: <ul> <li>On completion of the course, students will be able to-</li> <li>CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory.</li> <li>CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify fundamental algebraic structures.</li> </ul> </li> <li>UNIT - 1 Sets And Propositions (06 hrs + 2 hrs Tut)</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I- (CO1)</li> <li>UNIT - I Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combinations.</li> <li>Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.</li> </ul>	4. To recognize types of a	relation, formulate and solve p	roblems with relations and
<ul> <li>6. To understand basics of influer file(i) and its applications.</li> <li>6. To understand the various types' algebraic structures and its applications.</li> <li>Course Outcomes:         <ul> <li>On completion of the course, students will be able to-CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory.</li> <li>CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify fundamental algebraic structures.</li> </ul> </li> <li>UNIT - I Sets And Propositions (06 hrs + 2 hrs Tut)</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> </ul> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I-(CO1)</li> <li>UNIT - I Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combinations.</li> <li>Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.</li> <li>Mapping of Course Outcomes for Unit II-(CO2)</li>	5. To understand basics of	of number theory and its applie	ations
<ul> <li>On completion of the course, students will be able to- CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.</li> <li>CO2: Analyze and evaluate the combinatorial problems by using probability theory.</li> <li>CO3: Apply the concepts of graph theory to devise mathematical models.</li> <li>CO4: Analyze types of relations and functions to provide solution to computational problems.</li> <li>CO5: Identify techniques of number theory and its application.</li> <li>CO6: Identify techniques of number theory and its application.</li> <li>CO6: Identify fundamental algebraic structures.</li> <li>UNIT - I</li> <li>Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.</li> <li>Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions</li> <li>Mapping of Course Outcomes for Unit I- (CO1)</li> <li>UNIT – II</li> <li>Combinatorics: Rules of Sum and Product, Permutations, Combinations.</li> <li>Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.</li> <li>Mapping of Course Outcomes for Unit II- (CO2)</li> </ul>	6. To understand the vari	ous types' algebraic structures	and its applications
Conserventions       On completion of the course, students will be able to- CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.         CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models. CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application. CO6: Identify fundamental algebraic structures.         UNIT - I       Sets And Propositions         (06 hrs + 2 hrs Tut)         Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions:       Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions         Mapping of Course Outcomes for Unit I- (CO1)       UNIT - II         Combinatorics: Rules of Sum and Product, Permutations, Combinations.       Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.         Mapping of Course Outcomes for Unit II- (CO2)       Evaluations of Combinatorics and Discrete Probability.	Course Outcomes:	ous types argeorate structures	and its applications.
CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning. CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models. CO4: Analyze types of relations and functions to provide solution to computational problems. CO5: Identify techniques of number theory and its application. CO6: Identify fundamental algebraic structures. UNIT – I Sets And Propositions (06 hrs + 2 hrs Tut) Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction. Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1) UNIT – II Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut) Combinatorics: Rules of Sum and Product, Permutations, Combinations. Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability. Mapping of Course Outcomes for Unit I- (CO2)	On completion of the cou	urse students will be able to-	4200
reasoning. CO2: Analyze and evaluate the combinatorial problems by using probability theory. CO3: Apply the concepts of graph theory to devise mathematical models. CO4: Analyze types of relations and functions to provide solution to computational problems. CO5: Identify techniques of number theory and its application. CO6: Identify fundamental algebraic structures. UNIT – I Sets And Propositions (06 hrs + 2 hrs Tut) Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction. Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1) UNIT – II Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut) Combinatorics: Rules of Sum and Product, Permutations, Combinations. Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability. Mapping of Course Outcomes for Unit I- (CO2)	CO1: Formulate and app	ly formal proof techniques and	solve the problems with logical
CO2: Analyze and evaluate the combinatorial problems by using probability theory.         CO3: Apply the concepts of graph theory to devise mathematical models.         CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         CO6: Identify techniques of number theory and its application.         Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions         Mapping of Course Outcomes for Unit I- (CO1)         UNIT – II       Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)         Combinatorics: Rules of Sum and Product, Permutations, Combinations.         Discrete Probability: Dis	reasoning.		
CO3: Apply the concepts of graph theory to devise mathematical models. CO4: Analyze types of relations and functions to provide solution to computational problems. CO5: Identify techniques of number theory and its application. CO6: Identify fundamental algebraic structures. UNIT - I Sets And Propositions (06 hrs + 2 hrs Tut) Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction. Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1) UNIT – II Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut) Combinatorics: Rules of Sum and Product, Permutations, Combinations. Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability. Mapping of Course Outcomes for Unit II- (CO2)	CO2: Analyze and evaluation	ate the combinatorial problems	by using probability theory.
CO4: Analyze types of relations and functions to provide solution to computational problems.         CO5: Identify techniques of number theory and its application.         CO6: Identify fundamental algebraic structures.         UNIT - I       Sets And Propositions         Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions:       Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions         Mapping of Course Outcomes for Unit I- (CO1)         UNIT - II       Combinatorics And Discrete Probability         (06 hrs + 2 hrs Tut)         Combinatorics: Rules of Sum and Product, Permutations, Combinations.         Discrete       Probability: Discrete         Probability:       Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.         Mapping of Course Outcomes for Unit II- (CO2)	CO3: Apply the concepts	s of graph theory to devise mat	hematical models.
problems.CO5: Identify techniques of number theory and its application.CO5: Identify fundamental algebraic structures.UNIT – ISets And Propositions(06 hrs + 2 hrs Tut)Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.Propositions:Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and PropositionsMapping of Course Outcomes for Unit I- (CO1)UNIT – IICombinatorics And Discrete Probability(06 hrs + 2 hrs Tut)Combinatorics: Rules of Sum and Product, Permutations, Combinations.DiscreteProbability: DiscreteProbability, ConditionalProbability, Bayes Theorem,Information and Mutual Information, Applications of Combinatorics and Discrete Probability.Mapping of Course Outcomes for Unit II- (CO2)	CO4: Analyze types of re	elations and functions to provid	le solution to computational
CO5: Identify techniques of number theory and its application. CO6: Identify fundamental algebraic structures.UNIT - ISets And Propositions(06 hrs + 2 hrs Tut)Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.Propositions:Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1)UNIT - IICombinatorics And Discrete Probability Output (06 hrs + 2 hrs Tut)Combinatorics: Rules of Sum and Product, Permutations, Combinations.DiscreteProbability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.Mapping of Course Outcomes for Unit II- (CO2)	problems.	College of E - * Pune - 5 *	ngineering
CO6: Identify fundamental algebraic structures.UNIT – ISets And Propositions(06 hrs + 2 hrs Tut)Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.Propositions:Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1)UNIT – IICombinatorics And Discrete Probability Information and Mutual Information, Applications of Combinatorics and Discrete Probability, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.Mapping of Course Outcomes for Unit II- (CO2)	CO5: Identify techniques	s of number theory and its appli	ication.
UNIT - ISets And Propositions(06 hrs + 2 hrs Tut)Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.Propositions:Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1)UNIT - IICombinatorics And Discrete Probability Discrete Probability:Discrete Probability:Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.Mapping of Course Outcomes for Unit II- (CO2)	CO6: Identify fundament	tal algebraic structures.	
Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions:       Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions         Mapping of Course Outcomes for Unit I- (CO1)         UNIT – II       Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)         Combinatorics: Rules of Sum and Product, Permutations, Combinations.         Discrete       Probability: Discrete         Probability:       Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.         Mapping of Course Outcomes for Unit II- (CO2)	UNIT – I	Sets And Propositions	(06 hrs + 2 hrs Tut)
Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.         Propositions:       Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions         Mapping of Course Outcomes for Unit I- (CO1)         UNIT – II       Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)         Combinatorics: Rules of Sum and Product, Permutations, Combinations.         Discrete       Probability: Discrete         Probability:       Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.         Mapping of Course Outcomes for Unit II- (CO2)	Sets: Sets, Combinations of S	Sets, Venn Diagram, Finite an	d Infinite Sets, Countable Sets,
Propositions:Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1)UNIT – IICombinatorics And Discrete Probability(06 hrs + 2 hrs Tut)Combinatorics:Rules of Sum and Product, Permutations, Combinations.DiscreteProbability:DiscreteDiscreteProbability:DiscreteProbability:DiscreteProbability, ConditionalProbability:DiscreteProbability, ConditionalMapping of Course Outcomes for Unit II- (CO2)	Multisets, Principle of Inclusio	on and Exclusion, Mathematica	l Induction.
Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions Mapping of Course Outcomes for Unit I- (CO1) UNIT – II Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut) Combinatorics: Rules of Sum and Product, Permutations, Combinations. Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability. Mapping of Course Outcomes for Unit II- (CO2)	<b>Propositions</b> : Propositions,	Logical Connectives, Co	nditional and Bi-conditional
and Quantifiers, Normal forms. Applications of Sets and Propositions         Mapping of Course Outcomes for Unit I- (CO1)         UNIT – II       Combinatorics And Discrete Probability (06 hrs + 2 hrs Tut)         Combinatorics: Rules of Sum and Product, Permutations, Combinations.         Discrete       Probability: Discrete         Probability:       Discrete         Probability:       Discrete         Combinatorics and Discrete       Probability, Bayes         Combinatorics:       Rules of Sum and Product, Permutations, Combinations.         Discrete       Probability: Discrete         Probability, Conditional       Probability, Bayes         Information and Mutual Information, Applications of Combinatorics and Discrete       Probability.         Mapping of Course Outcomes for Unit II- (CO2)       Mapping of Course Outcomes for Unit II- (CO2)	Propositions, Logical Equivale	ence. Validity of Arguments by	y using Truth Tables, Predicates
Mapping of Course Outcomes for Unit I- (CO1)         UNIT – II       Combinatorics And Discrete Probability       (06 hrs + 2 hrs Tut)         Combinatorics: Rules of Sum and Product, Permutations, Combinations.       Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.         Mapping of Course Outcomes for Unit II- (CO2)	and Quantifiers Normal forms	Applications of Sets and Pror	positions
With pring of Course Outcomes for Cint F-(COF)UNIT – IICombinatorics And Discrete Probability(06 hrs + 2 hrs Tut)Combinatorics: Rules of Sum and Product, Permutations, Combinations.DiscreteProbability: DiscreteProbability, ConditionalDiscreteProbability: DiscreteProbability, ConditionalProbability, BayesInformation and Mutual Information, Applications of Combinatorics and DiscreteProbability.Mapping of Course Outcomes for Unit II- (CO2)	Manning of Course Outcome	$r_{\rm constant}$	
UNIT – IICombinatorics And Discrete Probability(06 hrs + 2 hrs Tut)Combinatorics: Rules of Sum and Product, Permutations, Combinations.DiscreteProbability: DiscreteProbability, ConditionalProbability:DiscreteProbability, ConditionalProbability, BayesInformation and Mutual Information, Applications of Combinatorics and DiscreteProbability.Mapping of Course Outcomes for Unit II- (CO2)	Mapping of Course Outcome		ngineering
Combinatorics: Rules of Sum and Product, Permutations, Combinations. Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability. Mapping of Course Outcomes for Unit II- (CO2)	UNIT – II Combina	atorics And Discrete Probability	y (06 hrs + 2 hrs Tut)
Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability. <b>Mapping of Course Outcomes for Unit II- (CO2)</b>	Combinatorics: Rules of Sum	and Product, Permutations, Con	mbinations.
Information and Mutual Information, Applications of Combinatorics and Discrete Probability. Mapping of Course Outcomes for Unit II- (CO2)	Discrete Probability: Discre	te Probability, Conditional	Probability, Bayes Theorem,
Mapping of Course Outcomes for Unit II- (CO2)	Information and Mutual Inform	nation, Applications of Combin	natorics and Discrete Probability.
	Mapping of Course Outcomes f	for Unit II- (CO2)	

UNIT – III	Graph Theory	(06 hrs + 2 hrs Tut)				
Graphs: Basic Term	ninologies, Multi-Graphs, Weighted (	Graphs, Sub Graphs, Isomorphic				
graphs, Complete Gr	aphs, Regular Graphs, Bipartite Grap	hs, Operations on Graphs, Paths,				
Circuits, Hamiltonian	and Eulerian graphs, Travelling Sales	sman Problem, Factors of Graphs,				
Planar Graphs, Graph	Colouring.					
Trees: Tree Terminolog	gies, Rooted Trees, Path Length in Rooted	Trees, Prefix Codes, Spanning Trees,				
Fundamental Cut Sets a	and Circuits, Max flow –Min Cut Theorer	n (Transport Network). Applications				
of Graph Theory.	FE EDUC	AN				
Mapping of Course O	utcomes for Unit III- (CO3)	~/~~				
UNIT – IV	<b>Relations And Functions</b>	(06 hrs + 2 hrs Tut)				
Relations: Propertie	s of Binary Relations, Closure of	Relations, Warshall'sAlgorithm,				
Equivalence Relation	ns, Partitions, Partial Ordering Relat	tions, Lattices, Chains and Anti				
<b>Functions</b> : Function	s Composition of Functions Invertible	- Functions Pigeonhole Principle				
Discrete Numerie Fu	nctions Recurrence Relations: Recurr	ence Relation Linear Recurrence				
Relations with Con	stant Coefficients. Total Solutions.	Applications of Relations and				
Functions.						
Mapping of Course	Outcomes for Unit IV- (CO4)	5 *				
UNIT – V	Introduction To Number 7	Theory (06 hrs + 2 hrs Tut)				
Divisibility of Integ	ers: Properties of Divisibility, Division	on Algorithm, Greatest Common				
Divisor GCD and its	Properties, Euclidean Algorithm, Exte	nded Euclidean Algorithm, Prime				
Factorization Theore	m, Congruence Relation, Modular	Arithmetic, Euler Phi Function,				
Euler's Theorem, Fermat's Little Theorem, Additive and Multiplicative Inverses, Chinese						
Remainder Theorem.						
Mapping of Course Outcomes for Unit V- (CO5)						
UNIT - VI	Algebraic Structures	(06 hrs + 2 hrs Tut)				
Algebraic Structures: Introduction Semigroup, Monoid, Group, Abelian Group, Permutation						
Groups, Cosets, Normal Subgroup, Codes and Group Codes, Ring, Integral Domain, Field.						
Applications of Algebraic Structures.						
Mapping of Course	Outcomes for Unit VI- (CO6)					

**Text Books** 

- 1. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", 4th Edition, McGraw-Hill
- 2. Kenneth H. Rosen, "Discrete Mathematics and its Applications", & 7th edition, McGraw-Hill

#### **Reference Books**

1. Bernard Kolman, Robert C. Busby, Sharon Cutler Ross, "Discrete mathematical structures", 6th edition, Prentice Hall of India

2. Edgar G. Goodaire, Michael M. Parmenter, "Discrete Mathematics with Graph Theory", 3rd Edition, Pearson Education

3. Tremblay J. S., "Discrete mathematical structures with application", 3rdEdition, Tata

McGraw Hill 4. Lipschutz Seymour, "Discrete mathematics", 4th Edition, Tata McGraw

5. Johnsonbaugh Richard, "Discrete Mathematics", 7th edition, Pearson

6. Biggs Norman L, "Discrete mathematics", 6th edition, Oxford

7. David M. Burton, "Elementary Number Theory", &7th Edition, McGraw-Hill



## **COURSE OUTCOMES**

CO No.	Course Outcome	Mapping With Unit	Assessment Technique	Blooms Taxonomy Category					
CO214441_1	Formulate and apply formal	वा भूत्	1						
CO214441.1	proof techniques and solve the	1	UNIT TEST - I	L1-Remembering,					
	problems with logical	UC.							
	reasoning.		2112						
CO214441.2	Analyze and evaluate the		~0	N					
/.	combinatorial problems by		UNIT TEST – I	L5- Evaluating					
/4	using probability theory.	202		19					
CO214441.3	Apply the concepts of graph	ADA		0					
	theory to devise mathematical	III	UNIT TEST – I	L3- Applying					
	models.								
CO214441.4	Analyze types of relations and		UNIT TEST -	200					
18	functions to provide solution to	IV	П	L4- Analyzing					
	computational problems.		5						
CO214441.5	Identify techniques of number	of E	UNIT TEST -	ing					
\	theory and its application.	v	п	L3- Applying					
CO214441.6	Identify fundamental algebraic	Construction of the local division of the lo	UNIT TEST - II						
	structures.	VI	- X /	L3- Applying					
Pune - 5									
Modern College of Engineering									



## **PREREQUISITES**

### **TEACHING PLAN**

**Teaching Plan Short** <u>Semester</u> :-I

w. e. f. :- 05/07/2021

Division: A &B

<u>Class</u> : - SE

Subject :- Discrete Structure

Academic Year:-2021-22

Subject Code :- 214441 No. of Lectures/ weeks: 4

Faculty In charge :- Mr. Shantanu S Pawar/Ms. Vandana G Dixit

• Lecture Plan

Sr. No.	Unit No.	Unit/ Topic Name	Start week	End week	
1	Т	Sats and Propositions	2nd Week	5th week	
1.	1	Sets and Propositions	August	August	
о п		Permutations, Combinations and Discrete	1st Week	3rd Week	
Ζ.	11	Probability	September	September	
3	IV	Pelations and Functions	4th week	1st week	
5.	1 V	Relations and Functions	September	October	
1	III	ш	Graph Theory	2nd week	4 th week
4.			October	October	
5	V	Introduction To Number Theory	5th week	2nd week	
5.	v	Introduction to Number Theory	October	November	
6	VI	Algebraic Structures	3rd week	1 st week	
0.	V1	Algeoraic Structures	November	December	



SE (Semester I)
-----------------

			Detai	l Teaching Plan	17		
LectNo	Unit No.	Main Topic to be Covered	Sub Topics to be Covered	Chap. No. & Reference Books	CO to Attain	Measurable to attain CO	Mode of Delivery
1		R	Sets, Combination of sets	(A)}~		0	
2			Venn Diagrams				
3		(8)	Finite and Infinite sets, Un-countably infinite sets	1223			
4		185	Principle of inclusion and exclusion, multisets.	C. L. Liu and D. P. Mohapatra,		3	
5	I	Sets and	Propositions, Conditional Propositions	Discrete Mathematics" &	ineer coll	ing	Chalk and
6		Propositions	Logical Connectivity, Propositional calculus	Kenneth H. Rosen, "Discrete Mathematics and its	COF	Unit Test	I aik
7			Universal and Existential Quantifiers, Normal forms,	Applications", & 7th edition, McGraw- Hill	*1		
8		_	methods of proofs	ie			
9		Mod	Mathematical Induction	e of Eng	ineer	ing	
				ne - 5 🛧 💳			

10       11         11       Combinatorics: Rules of Sum and Permutations         12       Combinatorics: Rules of Sum and Permutations         12       Discrete Probability         13       Combinatorics: Conditional Probability         14       II         14       And Discrete         Probability       Conditional Probability         15       Bayes Theorem         16       And Discrete         17       Discrete Probability         18       Graphs: Basic         19       III         19       III         19       III         20       Complic graphs; Complic graphs; Complic graphs; Complic graphs; Regular Graph	· · · · · ·		1		1
11       12       Discrete Probability:       R. Johnsonbaugh,       Conditional Probability:       R. Johnsonbaugh,       Column Test       Chalk and         14       II       And Discrete       Bayes Theorem       & & & & & & & & & & & & & & & & & & &	10			Combinatorics: Rules of Sum and Permutations	
12       Discrete Probability:       R. Johnsonbaugh, "Discrete Probability."       "Discrete Mathematics", 5th Edition, Pearson Education         14       II       And Discrete Probability       Bayes Theorem       Kenneth H. Rosen, "Discrete Probability       CO2       Unit Test       Chalk and Talk         15       Information and Mutual Information       Information and Mutual Information       Mathematics and its Applications", & 7th edition, McGraw- Hill       CO2       Unit Test       Chalk and Talk         16       Applications of Combinatorics       Bases Theorem       R. Johnsonbaugh, "Discrete Discrete Probability       CO2       Unit Test       Chalk and Talk         18       Applications of Complete Probability       R. Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson Education       CO3       Unit Test       Chalk and Talk         19       III       Graph Theory       Weighted Graphs, Sub Graphs       R. Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson Education       CO3       Unit Test       Chalk and Talk         20       III       Graph Theory       Weighted Graphs, Regular Graphs       Mathematics and its Applications", & 7th       CO3       Unit Test	11			Combinations	
13       II       And Discrete       Conditional Probability       Edition, Person       Education         14       II       And Discrete       Bayes Theorem       &       Kenneth H. Rosen, "Discrete       CO2       Unit Test       Chalk and Talk         15       Information and Mutual Information       Information       Mathematics and its Applications", & 7th edition, MeGraw-Hill       CO2       Unit Test       Chalk and Talk         16       Information       Applications of Combinatories       Hill       Combinatories       Condition, Person       CO2       Unit Test       Test         18       Information       Graphs: Basic Terminologies, Multi-Graphs, Sub Graphs, Sub Graphs, Sub Graphs, Sub Graphs, Regular Graphs, Kerneth H. Rosen, CO3       Unit Test       Chalk and Talk	12			Discrete Probability: R. Johnsonbaugh, Discrete Probability, "Discrete Mathematica" 54	
14       II       And Discrete Probability       Bayes Theorem       & Kenneth H. Rosen, "Discrete Mathematics and its Applications", & 7th edition, McGraw- Hill       CO2       Unit Test       Chalk and Talk         16       Applications of Combinatorics       Information       Mathematics and its Applications", & 7th edition, McGraw- Hill       Mathematics and its Applications", & 7th edition, McGraw- Hill       CO2       Unit Test       Chalk and Talk         17       Discrete Probability       Mathematics is of Combinatorics       R. Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson Education       CO3       Unit Test       Chalk and Talk         19       III       Graph Theory       Weighted Graphs, Sub Graphs       & Kenneth H. Rosen, "Discrete       CO3       Unit Test       Chalk and Talk         20       Isomorphic graphs, Complete Graphs, Regular Graphs       Mathematics and its Applications", & 7th       CO3       Unit Test       Chalk and Talk	13		Combinatorics	Conditional Probability Edition, Pearson Education	
15       Information and Mutual Information       Information and Mutual Information       Mathematics and its Applications", & 7th edition, MeGraw- Hill         16       Discrete Probability       Information       R. Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson Education         18       III       Graph Theory       Graphs, Sub Graphs, Complete Graphs, Regular Graphs       R. Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson Education       CO3       Unit Test       Chalk and Talk         20       Isomorphic graphs, Complete Graphs, Regular Graphs       Sub graphs, Complete Graphs, Regular Graphs       Mathematics and its Applications", & 7th       Co3       Unit Test       Chalk and Talk	14	Π	And Discrete	& Bayes Theorem& Kenneth H. Rosen, CO2CO2Unit Test	Chalk and Talk
16       Applications of Combinatorics       Hill       Image: Combinatorics       Combinatorics       Image: Combinatorics	15		Probability	Information and Mutual Information Applications", & 7th edition, McGraw-	
17       Discrete Probability         18       Graphs: Basic         18       Graphs: Basic         19       III         19       III         20       Isomorphic graphs, Complete Graphs, Regular Graphs, Regular Graphs, Regular Graphs	16		(E)	Applications of Hill Combinatorics	
18       III       Graphs: Basic Terminologies, Multi- Graphs       R. Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson Education       Unit Test       Chalk and Talk         19       III       Graph Theory       Weighted Graphs, Sub Graphs       Kenneth H. Rosen, "Discrete       CO3       Unit Test       Chalk and Talk         20       Isomorphic graphs, Complete Graphs, Regular Graphs       Isomorphic graphs, Regular Graphs       "Discrete       Mathematics and its Applications", & 7th       Image:	17		Mod	Discrete Probability	
19IIIGraph TheoryWeighted Graphs, Sub GraphsEducation & CosUnit TestChalk and Talk2019Isomorphic graphs, Complete Graphs, Regular GraphsIsomorphic graphs, Complete Graphs, Regular GraphsCO3Unit TestChalk and Talk	18			Graphs: Basic Terminologies, Multi- Graphs R. Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson	
20 Isomorphic graphs, Complete Graphs, Regular Graphs Graphs Complete Graphs, Regular Graphs Complete Graphs, Regular Graphs Complete Graphs, Regular Graphs Complete Graphs, Regular Graphs Complete Graphs, Regular Complete Graphs	19	III	Graph Theory	Weighted Graphs, Sub GraphsEducation & Kenneth H. Rosen,Unit Test	Chalk and Talk
	20		Mod	Isomorphic graphs, Complete Graphs, Regular Graphs Applications", & 7th	
					I 



29 30 31 32 33 34 35 36 37	IV	Relations And Functions	Relations: Properties of Binary Relations         Closure of Relations, Warshall's Algorithm         Equivalence Relations, Partitions,         Partial Ordering Relations, Lattices, Chains and Anti Chains.         Functions: Functions, Composition of Functions, Pigeonhole Principle         Invertible Functions, Pigeonhole Principle         Discrete Numeric Functions,         Recurrence Relation, Linear Recurrence Relations, with Constant Coefficients         Total Solutions, Applications of Relations Applications of Relations and Functions	Chalk and Talk
37		Mod	Total Solutions, Applications of Relations and Functions	

r		· · · · · · · · · · · · · · · · · · ·		1		
38		Di Pr	vivisibility of Integers: roperties of Divisibility			
39		Di Gi Gi	Pivision Algorithm, Breatest Common Divisor CD and its Properties "Discrete			
40			uclidean Algorithm, xtended Euclidean lgorithm			
41	V	Introduction Pr To Number Th Theory Re	Education Fine Factorization heorem, Congruence elation, "Discrete CO 5 Unit Test	Chalk and Talk		
42		M Pt Th	Mathematics and its     Applications", & 7th       Heorem     edition, McGraw-			
43		Ac	ermat's Little Theorem, Hill dditive and Iultiplicative Inverses			
44			hinese Remainder heorem.			
45		Al In	Igebraic Structures:B. Kolman, R. Busbyand S. Ross, "Discrete			
46		Algebraic	Ionoid, Group Mathematical Structures", 4 th	Chalk and		
47	VI	Structures	belian Group, & CO 6 Unit Test	Talk		
48		Mode	ermutation Groups Contraction Gr			
FS's MCOF	Informat	ion Technology	- 12 -			



## **UNIT WISE QUESTION BANK**

#### Unit 1

1During a survey of the ice cream preferences of students, it was found that 22 like mango, 25 like custard apple, 39 like grape,CO162014	
found that 22 like mango, 25 like custard apple, 39 like grape,	
9 like custard apple and mango, 17 like mango and grape, 20 like	
custard apple and grape, 6 like all flavors and 4 like none. Then	
how many students were surveyed? How many students like exactly	
One flavor, now many students like exactly two flavors?	
2 State the principle of Mathematical Induction, using mathematical COT o 2012 induction prove the following proposition	
P(n) = 1 + 4 + 7 + + (3n - 2) = n (3n - 1)	
$1(n) - 1 + 4 + 7 + \dots + (3n - 2) - \frac{n(3n - 1)}{2}$	
3 Show that each of these conditional statements is a tautology CO1 6 2018	
by using truth tables :	
(i) $(p \land q) \rightarrow p$	
$(ii) p \rightarrow (p \lor q).$	1
4 Prove the statement is true using mathematical induction : CO1 6 2016	
$n^3 + 2n$ is divisible by 3 for all $n > = 1$	
5 There are 2504 computer science students at a school. Of these, CO1 6 2018	
1876 have taken a course in Java, 999 have taken a course in Linux,	1
and 345 have taken a course in C. Further, 876 have taken courses in	27 -
both Java and Linux, 231 have taken courses in both Linux and C, and	
290 have taken courses in both Java and C. If 189 of these students	
have taken courses in Linux, Java, and C, how many of these 2504	-
students have not taken a course in any of these three programming	
Ianguages ?       6       Drown the statement is true using methometical induction       CO1       6	
$\frac{1}{2013}$	
$n^{\circ} + 2n$ is divisible by 3 for all $n \ge 1$	
/Snow that (A-B)-C= A – (BUC) Using Venn diagramCOI32015 $0.14$ $0.14$ $0.14$ $0.14$ $0.14$ $0.14$ $0.14$ $0.14$ $0.14$	
8 Obtain CNF for following $\sim (p \lor q) \leftrightarrow (p \land q)$ [COI] 3 [2013]	

TImit.	2
	4

10%

0

and the

Q.N	Question	CO	Mark	Universit
0		00	S	y Year
1	Prove by induction that the sum of cubes of three consecutive	CO2	6	2017
	integers is divisible by 9.			0
2	Two cards are drawn together from a pack of 52 cards.	CO2	4	2017
	Determine the probability that one is spade and one is a heart.			
3	In a certain college town, 25% of the students failed in	CO2	7	2014
	mathematics, 15% failed in chemistry, and 10% failed both in			
	mathematics and chemistry. A student is selected at random :			
	(i) If he failed in chemistry, what is the probability that			
	he failed in mathematics ?			
	(ii) If he failed in mathematics, what is the probability that			
-----	-------------------------------------------------------------------------------------	------------	---------------	------------------
	he failed in chemistry ?			
	(iii) What is the probability that he failed in mathematics			
	or chemistry ?			
	(iv) What is the probability that he failed neither in			
	mathematics nor in chemistry ?			
4	12 persons are made sit around a table. Find the number of	CO2	6	2014
	ways they can sit such that 2 specific persons are not	. 7		
	together.	11		
5	Find the smallest number of people you need to choose at	CO2	6	2018
	random so that the probability that at least two of them were	1		
	both born on April 1 exceeds ¹ / ₂ . Assume number of days in	12	Sec. 1	
	year as 366 days.	$( \cap$	1	
6	A club has 25 members :	CO2	6	2018
	(i) How many ways are there to choose four members of the	$\sim$	4	
	club to serve on an executive committee?	$\sim$	es	N
	(ii) How many ways are there to choose a president, vice		\ CJ !	1.
	president, secretary, and treasurer of the club, where no		1.1	~ `
	person can hold more than one office ?			1
7	Out of a total 130 students,60 are wearing hats,51 are wearing	CO2	6	2017
	scarves, and 30 are wearing both hats and scarves. Out of 54			
	students who are wearing sweaters, 26 are wearing hats, 21		$\sim$	
	are wearing scarves, and 12 are wearing both hats and		1	
	scarves. Everyone wearing neither a hat nor a scarf is wearing		/=	2/
	gloves:			
	(a) How many students are wearing gloves?			
	(b) How many students not wearing a sweater are wearing		e mii me	9
	hats but not scarves?	1	r	1
	(c) How many students not wearing a sweater are wearing	1		/
-	neither hat nor scart?		- /	
8	Tickets numbered 1 to 20 are mixed up and then a ticket is	CO2	3	2017
	drawn at random. What is the probability that the ticket drawn	- 75	$\mathcal{A}$	
	has a number which is a multiple of 3 or 5?			
9	In a box, there are 8 red, 7 blue, 6 green balls. One ball is	CO2	3	2017
	picked up randomly. What is the probability that it is neither		- N	
100	red nor green?			_
10	Alledorn College of Engl	<b>200</b>	an inc	2017
10	Three unbiased coins are tossed. What is the probability of	CO2	2	2017
	getting at most two heads?	and		2017
11	A survey of 70 high school students revealed that 35 like folk	CO2	6	2015
	music, 15 like classical music, and 5 like both. How many of			
	the students surveyed do not like either folk or classical			
	music?			<b>•</b> • • • =
12	A Die is rolled and a coin is tossed find the probability that	CO2	4	2015
	the die shows an odd number and the coin shows a head			

13	In how many ways can 6 men and 5 women be seated in a line	CO2	3	2016
	so that no two women sit together?			
14	A single card is drawn from an ordinary deck S of 52 cards.	CO2	6	2014
	Find the probability p that :			
	(i) The card is a king.			
	(ii) The card is a face card (jack, queen or king).			
	(iii) The card is a heart.			
	(iv) The card is a face.	1		
15	Find number of arrangement that can be made out of letters :	CO2	7	2014
	(i) ASSASSINATION			
	(ii) GANESHPURI.	1 m 1		

# Unit 3









Unit 4

Q.N	Wodern College of Engi	СО	Mark	Universit
0	1 1 7	1	S	y Year
1	Draw Hasse Diagram on relation R on A. Let $A = \{1,2,3,4,5\}$	CO4		2016
	and $R = \{(1,1), (2,1)\}$	1	/	
2	What is recurrence relation ? Solve the following recurrence	CO4	6	2014
	relation : ar $-7ar - 1 + 10ar - 2 = 0$ given that $a0 = 0$	10	1	
	and $a_1 = 3$ .	1		
3	Let A = $\{1, 2, 3, 4\}$ and let R = $\{(1, 1), (1, 2), (1, 4), (2, 4), (3, 4)\}$	CO4	6	2014
	1), (3, 2), (4, 2), (4, 3), (4, 4)}. Find Transitive closure of R		1 No.	
	using Warshall's Algorithm.			1. Contraction 1. Con
4	Draw the graph and its equivalent Hasse diagram for	CO4	6	2018
	divisibility	188	rin	
	on the set : {1, 2, 3, 6, 12, 24, 36, 48}.	1.101.101		2
5	Use Warshall's algorithm to find transitive closure of the	CO4	6	2018
	following			
	relation on the set $\{1, 2, 3, 4\}$ ,			
	$\mathbf{R} = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$			
6	define optimal tree for following set of weights, construct	CO4	6	2017
	optimal binary prefix code. For each weight in the set give			
	corresponding prefix code: 1,4,8,9,15,25,31,37			

7	Solve the following recurrence relation :	CO4	6	2015
	$a_n - 7a_{n-1} + 10a_{n-2} = 0, a_0 = 0, a_1 = 3$			
8	Find the transaction closure by using Warshall's algorithm for	CO4	6	2015
	the given relation as			
	$R = \{(1, 1), (1, 4), (2, 1), (2, 2), (3, 3), (4, 4).$			
9	Find the transitive closure of R by Warshall's algorithm where	CO4	6	2016
	A = {1, 2, 3, 4, 5, 6} and R = { $(x, y)    x - y  = 2$ } and	7		
	draw it digraph.			
10	What is recurrence relation ? Solve the following recurrence	CO4	6	2016
	relation :	$\sim$	<hr/>	
	$a_r - 4a_{r-1} + 4a_{r-2} = 0$ given that $a_0 = 1$ and $a_1 = 6$	$\sim$	* N	
	Unit 5	N	٢Ņ	

	Unit 5	1	2
Q.N 0	Question	СО	Mar Universit ks y Year
1	Determine the maximum flow in the following transport	CO5	7 2014
	Network.	2	
	b		
(	27 17 6 18		
	$a \xrightarrow{9} c z =$		$\leq$
			ring
		<u></u>	
2	Define optimal tree. For the following set of weights, construct	CO5	7 2014
	optimal binary prefix code. For each weight in the set, give	1	1
	corresponding code words — 8, 9, 12, 14, 16, 19.		<u>\</u>
3	Use the Kruskal's algorithm to find the minimum spanning tree	CO5	6 2014
- F	for the graph shown in the figure.		
		iee	ring
	9 a 5 d 4		
	f 10 e		







Q.N			Question		CO	Ma rks	Univers
1	Consider an	algebraic sy	stem (G, *),	where G is the set of all non-	CO6	6	2014
	zero real nur	nber and * is	s a binary op	peration defined by a * b =			
	ab/4. Show t	hat (G, *) is					
2	What is abelian group ? Show that $(Z6, +)$ is an Abelian Group ?					7	2018
3	Find the ham	Find the hamming distance between code words of :					2018
	$C = \{(0000),$	(0101), (10	11), (0111)}		1	- /	
	Rewrite the i	message by a	adding even	parity check bit and odd		1	
4	parity check	parity check bit.					2010
4	Let $R = \{0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}\}$ and $* = binary operation,$				006	/	2018
	so that for	a and b in	1 R, a * D	is overall angular rotation	~ ``		
	correspondin	ig to success	ive rotations	by a and then by b. Show that		1	
~	(R, *) is a G	roup.			COL		2010
5	Let $G = \{eve$	$\{n, odd\}$ and	binary oper	ation _ be defined as :	CO6	6	2018
	\$.	even	odd	ge of Engino	eer	ing	3
	even	even	odd	une - 5 🛪 🚃			
	odd	odd	even				
	Show that (C	G, _) is a gro	up	-			

6	Let Q1 be the set of all rational numbers other than 1.Show that	CO6	7	2017
	with operation $*$ defined on the set Q1 by (a*b=a+b-ab) is an			
	Abelian group.			
7	Let I be the set of all integers. For each of the following determine	CO6	6	2017
	wheather * is an associative operation or not			
	(1) $a * b = max(a, b)$			
	(2) $a * b = min(x + 2, b)$	>		
	(3) $a = a - 2b$			
	(4) $a * b = max(2a - b, 2b - a).$			
8	Let $Z_n$ be the set of integers $\{0, 1, 2, \dots, n - 1\}$ .	CO6	7	2017
	$\oplus$ be a binary operation on $\mathbf{Z}_n$ such that :	- 1	N	
	( , S), 6.	<`₽	$\sim$	
	a + bija + b < n	N.,	0.1	λ
	$a \oplus b = a + b - nita + b > n$	- N	·	
		- 1	. C.	1
	Let $\odot$ be a binary operation on $\mathbf{Z}_n$ such that :			
	$a \odot b$ = the remainder of $ab$ divided by $n$ .			_
9	Consider the $(2, 7)$ encoding function $e$ .	CO6	6	2017
	e(00) = 0000000 $e(01) = 1010101$		1	2
	-2(10) - 0111110 - 2(11) - 0110110 8	5-5		
			i ma g	3
	(a) Find the minimum distance of e	1		/
	(b) How many errors will e detect?	£	1	
10	Determine the following sets together with binary operation	C06	6	2015
10	represent a group. If so, determine if it is abelian or not specify the	200	0	2010
	identity & inverse.(1) set of odd integers, binary operation:	1		
	multiplication		1	
	(2) set of all rational numbers binary operation: addition		1	-
11	Determine graph G and H shown in figure are isomorphic or not?	CO6	6	2015
		eer	ind	51
		10 10 10 10		2
	$u_2$ $u_3$ $v_2$ $v_3$			
	$u_{\epsilon}$ $u_{\epsilon}$ $v_{a}$			
	$u_6$ $v_6$			

12	Let Z be the set of integers :	CO6	6	2016
	(i) Show that the operation $*$ on Z defined by $a * b =$			
	$a + b + 1$ for all $a, b \in \mathbb{Z}$ satisfies the closure property,			
	associative law and the commutative law.			
	(ii) Find the identity element			
	(iii) Define inverse. What is the inverse of an integer $a$ ?	/		
13	A secondary storage media contains information of files with	CO6	7	2016
	different formats. The frequency of different types of files is	2		
	as follows :	1	N	
	Exe(20) hin(75) hat(20) ineg(85) dat(51) doc(32)	1	$\sim$	
	Exe(20), $Bin(75)$ , $Bat(20)$ , $Jpeg(85)$ , $aat(51)$ , $abt(52)$ ,	$\sim$	S	1
	sys(26), $c(19)$ , $cpp(25)$ , $bmp(30)$ , $avi(24)$ , $prj(29)$ , $lst(35)$ ,	$\langle \rangle$	0	5
	² zip(37).	>		
	Using Huffman algorithm, find optimal tree and its prefix			
	codes.		N S	
14	Define each of the following :	CO6	6	2016
	(i) Homomorphism of group	5-1		
	( <i>ii</i> ) Isomorphism of group	e-e-r	i na s	
	(iii) Semigroup			/
	( <i>iii</i> ) Semigroup		1	
	( <i>iv</i> ) Abelian group	2	1	
	A P. S	2		
	/ vne · ·		Ν.	
				-
	Modern College of Engin	eer	ing	3

# **Home Assignment**

### UNIT NO. 1

Q. No.	Question	CO	Marks		
1	A box contains 2 white, 3 black and 5 red balls. In how many ways can	CO1	6		
	three balls be drawn from the box if at least one black ball is to be				
	included in the draw?				
2	In how many ways can the letters of the word ENCYCLOPAEDIA be	CO1	6		
	arranged such that vowels only occupy the even positions?				
UNIT NO. 2					

# UNIT NO. 2

	UNIT NO. 2		
Q. No.	Question	CO	Marks
1	It was found that inn first year of computer science of 80 students, 50 know	CO2	6
	COBOL, 55 know C language and 46 know Pascal. It was also known that	P 1	
	37 know C and COBOL, 28 know C and Pascal, and 25 know Pascal and	- 0	\
1	COBOL. 7 students however know none of the language. Find:	$\langle O'$	1
1	(i) How many know all the three languages?	10	<u> </u>
1	(ii) How many know exactly two languages?	11	1.
	(iii) How many know exactly one language?		
	VE EDUCAZO		
2	In a class of 55 students, the number of students studying different	CO2	-6
1	subjects are as follows: Maths - 23, Physics - 24, Chemistry - 19, Maths	$\sim <$	2.7
- 1,3	+ Physics - 12, Maths + Chemistry - 9, Physics + Chemistry - 9, Physics	12	7/-
~	+ Chemistry - 7, all three subjects - 4. Find the numbers of students who		200
	have taken: (i) At least one subject, (ii) Exactly one subject,		

	Modern College of Enginee	e an il ann	
Q. No.	Question	СО	Marks
1	Let A be the product set {1, 2, 3} X {a, b}. How many relations are there on A?	CO2	6
2	Let A be a set of lines in a plane. Define the following relation on A: $I_1$ A $I_2$ iff $I_1$ is perpendicular to $I_2$ .determine whether the properties of a relation are satisfied by R.diagram.	CO2	6
			- 10 March 10

UNIT NO 4	-			
UNIT NO.4	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	a serie de serie	a second second	

	UNIT NO.4		
Q. No.	Question Close Clo	CO	Marks
1	Determine the number of edges in a graph with 6 nodes,2 of degree 4	CO4	6
	and 4 of degree 2. Draw two such graphs		
2	How many nodes are necessary to construct a graph with exactly 6	CO4	6
	edges in which edge node is of degree 2		

#### UNIT NO. 5

Q. No. Question CO Marks

PES's MCOE, Information Technology

1	Determine the number of edges in a graph with 6 nodes, 2 of degree 4	CO4	6
	and 4 of degree 2. Draw two such graphs		
2	What is the union of (i) two null graphs N3 and N4	CO4	7
	(ii) two complete graph K2 and K3		

### UNIT NO. 6

Q. No.	Question	-	the second			CO	Marks
1	Consider the binary operation table	defined	on the set	$t A = \{a,$	b, c, d}	CO5	6
	Then a * (b * c) =*	a	b	с	d/ /		
	a	b	с	а	d		
	b	с	b	а	d	1. C.	
	c	a	b	С	d	N	
	/ 9 / d	d	a	b	С	1	
2	161	-			~	CO5	6
	Let(A,*)be an algrbric system whe	re * is a b	inary ope	eration su	ch that	· · ·	N
	for any $a,b$ , belongs to A $a*b=a$	( ()	177.4	<b>L</b>		$\sim 10$	1.1
	i)show that * is an associative	operatio	on and	can *eve	er be a	10	
1	commutative operation	_		C.		10	2



# **Additional Resources:-**

NIL





# **SYLLABUS**

# 214442: Logic Design & Computer Organization

Lectures: 3 Hours/Week     03     In-Semester: 30Marks End-Semester: 70Marks       Unit 1     Introduction To Digital Electronics     06 hrs       Digital Logic families: Digital IC Characteristics; TFL: Standard TTL characteristics, Operation of TTL, NAND gate; CMOS: Standard CMOS characteristics; operation of CMOS NAND gate; Comparison of TTL & CMOS.       Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; IEEE Standard 754 Floating point number representations. Codes: Binary . BCD; octal, hexadecimal, Excess-3, Gray code & their conversions       Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2     Combinational Logic Design     06 hrs       Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.     Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)       Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3     Sequential Logic Design     06 hrs       Flip-Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flop twith regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of fli	Teaching Scheme:	Credits	Examination Scheme:				
Unit 1     Introduction To Digital Electronics     06 hrs       Digital Logic families: Digital IC Characteristics; TTL: Standard TTL characteristics, Operation of TTL ACMOS.     Standard CMOS characteristics; operation of CMOS NAND gate; Comparison of TTL & CMOS.       Signed Binary number representation and Arithmetic: Sign Magnitude, I's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; EEE Standar 754 Floating point number representations. Codes: Binary, BCD, octal, hexadecimal, Excess-3, Gray code & their conversions       Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form, Simplification of logical functions using K-Maps up to 4 variables.       Unit 2     Combinational Logic Design     06 hrs       Design using SSI totips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.     Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)       Encoder (IC 74147), Binary adder (IC 7483)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Vinit 3     Sequential Logic Design     06 hrs       Unit 3     Sequential Logic Design     06 hrs     1000000000000000000000000000000000000	Lectures: 3 Hours/Week	03	In-Semester: 30Marks				
Unit 1     Introduction To Digital Electronics     06 hrs       Digital Logic families: Digital IC Characteristics; TTL: Standard TTL characteristics, Operation of TTL A CMOS:     Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; IEEE Standard 754 Floating point number representations. Codes: Binary ABCD, octal, hexadecimal, Excess-3, Gray code & their conversions.       Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.       Unit 2     Combinational Logic Design     06 hrs       Design using SSI chips: Code converters, Half-Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.     Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)       Encoder (IC 74143), Binary adder (IC 7483).     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74138 & T13       Unit 3     Sequential Logic Design     06 hrs       Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.     Flip-Flops: Couters - saynchronous, synchronous and modulo, n counters, study of 7490 modulus n counter [Cs & their applications to implement mod counters; Registers - shift register types (SISO, SIPO, PISO & APIPO)& Applications.       Unit 4     Computer Organi		317771 48	End-Semester: 70Marks				
Unit 1     Introduction To Digital Electronics     06 hrs       Digital Logic families: Digital IC Characteristics; TTL: Standard TTL characteristics, Operation of TTL AXAND gate; CMOS; Standard CMOS characteristics, operation of CMOS NAND gate; Comparison of TTL & CMOS.       Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; IEEE Standard 754 Floating point number representations: Codes: Binary , BCD, octal, hexadecimal, Excess-3, Gray code & their conversions       Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.       Unit 2     Combinational Logic Design     06 hrs       Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.     Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)       Encoder (IC 74147), Binary adder (IC 7483)     Design using ST 1438.     Vint 3       Vint 3     Sequential Logic Design     06 hrs       Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Marter Stave configuration is \$tudy of 7474, 7476 flip flop ICs.       Application of flip-flops: Counter- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter; Registers - shift register types (SISO, SIPO, PISO & PIPO)& applications.  <		11	11.1				
Digital Logic families: Digital IC Characteristics; TTL: Standard TTL characteristics, Operation of TTL NAND gate; CMOS; Standard CMOS Characteristics, operation of CMOS NAND gate; Comparison of TTL & CMOS.     Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction sing 2's complement; IEEE Standard 754 Floating point number representations. Codes: Binary, BCD, octal, hexadecimal, Excess-3, Gray code & their conversions     Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplifeation of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.   Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Encoder (IC 74147), Binary adder (IC 7483)   Design   06 hrs     Unit 3   Sequential Logic Design   06 hrs     Introduction to MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.   Tint 6 hrs     Introduction to sequential circuits, Difference between combinational circuits and sequential circuits; Memory element-lack & Flip-Flop.   Flip-Flops. Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of f1474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous	Unit 1	Introduction To Digital Electronics	06 hrs				
NAND gate; CMOS: Standard CMOS characteristics, operation of CMOS NAND gate; Comparison of TTL & CMOS.     Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; IEEE Standard 754 Floating point number representations.     Codes: Binary ABCD, cotal, hexadecimal, Excess-3, Gray code & their conversions     Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.   Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Encoder (IC 74147), Binary adder (IC 7483)   Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.     Flip-Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one FF to another , Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Computer organization & computer architecture, organization, functions & types of computer units-C	Digital Logic families: Dig	ital IC Characteristics; TTL: Standard TT	L characteristics, Operation of TTL				
TTL & CMOS.     Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; IEEE Standard 754 Floating point number representations. Codes: Binary, BCD, octal, hexadecimal, Excess-3, Gray code & their conversions     Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.   Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Encoder (IC 74147), Binary adder (IC 7483)   Design   06 hrs     Introduction to MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.   Unit 3     Sequential Logic Design   06 hrs     Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.     Flip- Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one Ff to another , Study of flip flops with regard to asynchronous and modulo n counters, study of 7490 modulus n counter [Cs & their applications to implement mod counters; Registers - shift register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer Organization & Processo	NAND gate; CMOS: Stand	ard CMOS characteristics, operation of C	CMOS NAND gate; Comparison of				
Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; IEEE Standard 754 Floating point number representations. Codes: Binary, BCD, octal, hexadecimal, Excess-3, Gray code & their conversions     Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.   Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Bencoder (IC 74147), Binary adder (IC 7483)   Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   Flip-Flops:     Flip-Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one FF to another, Study of 7474, 7476 flip flop ICs.   Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter (Cs their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.   Oh s     Unit 4   Computer Organization & Processor <td>TTL &amp; CMOS.</td> <td></td> <td>$\langle \alpha \rangle$</td>	TTL & CMOS.		$\langle \alpha \rangle$				
complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement; IEEE Standard 754 Floating point number representations. Codes: Binary, BCD, octal, hexadecimal, Excess-3. Gray code & their conversions     Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.   Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using [C 74153 & 74138.   Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   Flip- Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of 7474, 7476 flip flop ICs.   Application of flip-flops; Counters- asynchronous, and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Unit 4   Computer organization of CPU; ALU (ALU signals, functions & types of computer units-CPU(typical organization, Functions, Types). Memory (Types & their uses in comput	Signed Binary number re	epresentation and Arithmetic: Sign Ma	ignitude, 1's complement & 2's				
drviston), subtraction using 2's complement; IEEE Standard 754 Floating point number representations. Codes: Binary , BCD, octal , hexadecimal , Excess-3 , Gray code & their conversions Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables. Unit 2 Combinational Logic Design 06 hrs Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder. Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238) Encoder (IC 74147), Binary adder (IC 7483) Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138. Unit 3 Sequential Logic Design 06 hrs Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop. Flip-Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs. Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications. Unit 4 Computer Organization &Processor 06 hrs Computer organization, Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus(Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle Processor: Single bus organization of CPU; ALU (ALU Signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( contro	complement representation	i, unsigned Binary arithmetic (addition	, subtraction, multiplication, and				
Codes: Binary, BCD, octal, hexadecimal, Excess-3, Gray code & their conversions     Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.   Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.   06 hrs     Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   06 hrs     Flip-Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7447, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer organization functions, Types), Memory (Types & their uses in computer units-CPU(typical organization of CPU; ALU( ALU signals, functions & types ); Register (types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle	division), subtraction using	2's complement; IEEE Standard 754 Floa	ating point number representations.				
Logic minimization: Representation of logic functions: logic statement, truth table, SOP form, POS form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.   Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Encoder (IC 74147), Binary adder (IC 7483)   Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   Flip-Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers - shift register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization functions, Types), Memory (Types & their uses in computer units-CPU(typical organization functions, types); Register (types & functions) & system bus(Address, data & control Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of PCU; ALU( ALU signals, functions & types); Register (types & functions) & system bus(Address, data & con	Codes: Binary , BCD, octa	, hexadecimal, Excess-3, Gray code &	their conversions				
form; Simplification of logical functions using K-Maps up to 4 variables.     Unit 2   Combinational Logic Design   06 hrs     Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n   Dit Binary adder.     Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)   Encoder (IC 74147), Binary adder (IC 7483)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & Sequential Logic Design   06 hrs     Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   06 hrs     Flip- Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of 7474, 7476 flip flop ICs.   Application of flip-flops. Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.   06 hrs     Unit 4   Computer Organization & Processor   06 hrs     Computer organization -Functions , Types), Memory (Types & their uses in computer units-CPU(typical organization of CPU; ALU( ALU signals, functions & types); Register (types & functions) & system bus(Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle   Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions) & types)	Logic minimization: Repre	sentation of logic functions: logic state	ment, truth table, SOP form, POS				
Unit 2Combinational Logic Design06 hrsDesign using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder. Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238) Encoder (IC 7417), Binary adder (IC 7483) Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.Unit 3Sequential Logic Design06 hrsIntroduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.06 hrsFlip- Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs. Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.06 hrsUnit 4Computer Organization & Processor06 hrsComputer organization & computer architecture, organization, functions & types of computer units- CPU(typical organization Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus(Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals for these	form; Simplification of log	ical functions using K-Maps up to 4 varia	bles.				
Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n     bit Binary adder.     Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Encoder (IC 74147), Binary adder (IC 7483)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3   Sequential Logic Design     06 hrs     Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.     Flip-Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization & computer architecture, organization, functions & types of computer units-CPU(typical organization of CPU; ALU( ALU signals, functions & types); Register (types & functions gives visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals for these micro operations.     Von Neumann & Harvard architecture, interrupt) and control signals fo	Unit 2	Combinational Logic Design	06 hrs				
bit Binary adder.     Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Encoder (IC 74147), Binary adder (IC 7483)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   06 hrs     Flip- Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization & computer architecture; organization, functions & types of computer units-CPU(typical organization of CPU; ALU( ALU signals, functions & types); Register (types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& con	Design using SSI chips: Co	ode converters, Half- Adder, Full Adder,	Half Subtractor, Full Subtractor, n				
Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238)     Encoder (IC 74147), Binary adder (IC 7483)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   Flip-Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization a computer architecture, organization, functions & types of computer units-CPU(typical organization ,Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus(Address, data & control , Typical-control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals for these micro operations.	bit Binary adder.		2 1.1				
Encoder (IC 74147), Binary adder (IC 7483)     Design using MSI chips: BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits; Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   Flip-Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization , Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus(Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals for these micro operations.     Unit 5   Processor Instructions & Processor 06 hrs	Introduction to MSI chips	s: Multiplexer (IC 74153), Demultiples	ter (IC 74138), Decoder (74238)				
Design using MSI chips:   BCD adder & Subtractor using IC 7483, Implementation of logic functions using IC 74153 & 74138.     Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   Flip-Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization Functions , Types), Memory (Types & their uses in computer units-CPU(typical organization of CPU; ALU( ALU signals, functions & types); Register (types & functions) & system bus (Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor:   Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals for these micro operations.     Case Study : 8086 processor , PCI bus   Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations. <td< td=""><td>Encoder (IC 74147), Binar</td><td>y adder (IC 7483)</td><td></td></td<>	Encoder (IC 74147), Binar	y adder (IC 7483)					
using IC 74153 & 74138.     Unit 3   Sequential Logic Design   06 hrs     Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.   Flip-Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization , Functions , Types), Memory (Types & their uses in computer units-CPU(typical organization , Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus(Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals for these micro operations.     Case Study : 8086 processor , PCI bus   Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus   Processor Instructions & Processor Io6 hrs	Design using MSI chips: I	CD adder & Subtractor using IC 7483,	Implementation of logic functions				
Unit 3Sequential Logic Design06 hrsIntroduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.Flip-Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs. Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.Unit 4Computer Organization & Processor06 hrsComputer organization , Functions , Types), Memory (Types & their uses in computer units- CPU(typical organization , Functions , Types), Memory (Types & their uses in computer ), 10( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals for these micro operations.Case Study : 8086 processor , PCI busProcessor Instructions & Processor06 hrs	using IC 74153 & 74138.	- 쓴 님 님은 문					
Introduction to sequential circuits: Difference between combinational circuits and sequential circuits;     Memory element-latch & Flip-Flop.     Flip-Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization &Processor   06 hrs     Computer organization , Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus(Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor   06 hrs	Unit 3	Sequential Logic Design	06 hrs				
Memory element-latch & Flip-Flop.Flip- Flops: Logic diagram, truth table & excitation table of \$R, JK, D, T flip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs. Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.Unit 4Computer Organization & Processor06 hrsComputer organization & computer architecture, organization, functions & types of computer units- CPU(typical organization , Functions , Types), Memory ( Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.Case Study : 8086 processor , PCI busUnit 5Processor Instructions & Processor06 hrs	Introduction to sequential	circuits: Difference between combination	nal circuits and sequential circuits;				
Php- Flops: Logic diagram, truth table & excitation table of SK, JK, D, T hip flops; Conversion from one FF to another , Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization , Functions , Types), Memory ( Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor   06 hrs	Memory element-latch & F	lip-Flop.	D.T. flip flower Conversion from				
One PP to another , Study of Hip Hops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration ; Study of 7474, 7476 flip flop ICs.     Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization & computer architecture, organization, functions & types of computer units- CPU(typical organization, Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.   06 hrs     Case Study : 8086 processor , PCI bus   Processor Instructions & Processor   06 hrs	FID- Flops: Logic diagram	, truth table & excitation table of SR, JR	and symphronous Preset & Clear				
Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shift register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization &Processor   06 hrs     Computer organization & computer architecture, organization, functions & types of computer units-CPU(typical organization, Functions, Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.   Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor   06 hrs	Master Slave configuration	: Study of 7474, 7476 flip flop ICs	and synchronous, Fleset & Clear,				
Application of hip-hops. Counter's asynchronous, synchronous and modulo in counters, study of 7490     modulus n counter ICs & their applications to implement mod counters; Registers - shift     register types (SISO, SIPO, PISO &PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization & computer architecture, organization, functions & types of computer units- CPU(typical organization ,Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies );     Von Neumann & Harvard architecture; Instruction cycle   Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.   Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor   06 hrs	Application of flip-flops: (	'ounters- asynchronous, synchronous and	modulo n counters, study of 7490				
Installation is control to suppression to imponent induction induction, register solution, register types (SISO, SIPO, PISO & PIPO)& applications.     Unit 4   Computer Organization & Processor   06 hrs     Computer organization & computer architecture, organization, functions & types of computer units- CPU(typical organization ,Functions , Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired & micro programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor     Processor   06 hrs	modulus n counter ICs & tl	beir applications to implement mod count	ers: Registers- shift				
Unit 4Computer Organization & Processor06 hrsComputer organization & computer architecture, organization, functions & types of computer units- CPU(typical organization ,Functions , Types), Memory ( Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU). Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations. Case Study : 8086 processor , PCI busProcessor06 hrsUnit 5Processor Instructions & Processor06 hrs	register types (SISO, SIPO	PISO & PIPO) & applications	ers, registers sint				
Computer organization of Processor Processor ProcessorComputer organization (Computer organization of Computer organization of Computer architecture, organization, functions & types of computer units- CPU(typical organization, Functions, Types), Memory (Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies ); Von Neumann & Harvard architecture; Instruction cycle Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU). Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations. Case Study : 8086 processor , PCI busUnit 5Processor Instructions & ProcessorProcessor 20	Unit 4	Computer Organization & Processor	06 hrs				
CPU(typical organization & computer and some an	Computer organization &	computer architecture, organization fun	ctions & types of computer units-				
functions) & system bus( Address, data & control , Typical control lines, Multiple-Bus Hierarchies );Von Neumann & Harvard architecture; Instruction cycleProcessor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types &functions of user visible, control & status registers such as general purpose, address registers, dataregisters, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hardwired µ programmed CU).Micro Operations (fetch, indirect, execute, interrupt) and control signals for these microoperations.Case Study : 8086 processor , PCI busUnit 5Processor Instructions & ProcessorDece 20	CPU(typical organization .	Functions, Types). Memory (Types & th	eir uses in computer ). IO( types &				
Von Neumann & Harvard architecture; Instruction cycle     Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor     Proce 20	functions) & system bus(	Address, data & control, Typical control	lines, Multiple-Bus Hierarchies );				
Processor: Single bus organization of CPU; ALU( ALU signals, functions & types); Register (types & functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor     Proce 20	Von Neumann & Harvard	architecture; Instruction cycle	ineering l				
functions of user visible, control & status registers such as general purpose, address registers, data registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions &Processor     Processor Instructions 20	Processor: Single bus organ	nization of CPU; ALU( ALU signals, fur	ctions & types); Register (types &				
registers, flags, PC, MAR, MBR, IR)& control unit ( control signals & typical organization of hard wired µ programmed CU). Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations. Case Study : 8086 processor , PCI bus Unit 5 Processor Instructions &Processor 06 hrs	functions of user visible,	control & status registers such as gener	al purpose, address registers, data				
wired µ programmed CU).     Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions &Processor     Processor   06 hrs	registers, flags, PC, MAR,	MBR, IR)& control unit ( control sign	als & typical organization of hard				
Micro Operations (fetch, indirect, execute, interrupt) and control signals for these micro operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor 06 hrs	wired µ programmed	CU).					
operations.     Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor 06 hrs     Processor if	Micro Operations (fetch, in	direct, execute, interrupt) and control sig	nals for these micro				
Case Study : 8086 processor , PCI bus     Unit 5   Processor Instructions & Processor   06 hrs     Processor if it is a state of the st	operations.						
Unit 5 Processor Instructions &Processor 06 hrs	Case Study : 8086 processor , PCI bus						
	Unit 5	Processor Instructions & Processor	• 06 hrs				
	Pro/ 10005 1 (		Decc 20				

3

 $\mathbb{N}_{0}$ 

117

#### Enhancements

Instruction : elements of machine instruction ; instruction representation (Opcode& mnemonics, Assembly language elements ) ; Instruction Format & 0-1-2-3 address formats, Types of operands

Addressing modes; Instruction types based on operations (functions& examples of each); key characteristics of RISC& CISC; Interrupt: its purpose, types, classes & interrupt handling (ISR, multiple interrupts), exceptions; instruction pipelining(operation & speed up)

Multiprocessor systems: Taxonomy of Parallel Processor Architectures, two types of MIMD clusters & SMP (organization & benefits) & multicore processor (various Alternatives & advantages 0f multicores), typical features of multicore intel core i7.

Case Study : 8086 Assembly language programming

Unit 6	Memory &Input / Output Systems	06 hrs
e me e	internety winput / output systems	00 1115

Memory Systems: Characteristics of Memory Systems, Memory Hierarchy, signals to connect memory to processor, memory read & write cycle, characteristics of semiconductor memory: SRAM, DRAM &ROM, Cache Memory – Principle of Locality, Organization, Mapping functions, write policies, Replacement policies, Multilevel Caches, Cache Coherence,

Input / Output Systems: I/O Module, Programmed I/O, Interrupt Driven I/O, Direct Memory Access (DMA).

Case Study : USB flash drive

# **Text Books:**

- 1. "Modern Digital Electronics", R.P. Jain, Tata McGraw-Hill, Third Edition
- 2. "Computer organization and architecture, designing for performance" by William Stallings, Prentice Hall, Eighth edition

# **Reference Books:**

- 1. "Digital Design", M Morris Mano, Prentice Hall, Third Edition
- 2. "Computer organization", Hamacher and Zaky, Fifth Edition
- 3. "Computer Organization and Design: The Hardware Software Interface" D. Patterson, J. Hennessy, Fourth Edition, Morgan Kaufmann
- 4. "Microprocessors and interfacing-programming and hardware" Douglas V. Hall and SSSP Rao, McGraw-Hill ,Third Edition

# **COURSE OUTCOME**

	ा जानम	यो ४	TO .	
CO No.	Course Outcome	Mapping With Unit/ Assignme nt	Assessment Technique	Blooms Taxonomy Category
214442.1	To Perform basic binary arithmetic & simplify logic expressions.	Unit I	Unit Test, Pre In sem Exam	Applying
214442.2	To Grasp the operations of logic ICs and Implement combinational logic functions using ICs.	Unit II	Unit Test, Pre In sem Exam	Applying
214442.3	To Comprehend the operations of basic memory cell types and Implement sequential logic functions using ICs.	Unit III	Unit Test, Pre In sem Exam	Applying
214442.4	To Elucidate the functions & organization of various blocks of CPU.	Unit IV	Unit Test, Pre End Sem Exam	Understanding
214442.5	To Understand CPU instruction characteristics, enhancement features of CPU	Unit V	Unit Test, Pre End Sem Exam	Understanding
214442.6	To Describe an assortment of memory types (with their characteristics) used in computer systems and basic principle of interfacing input, output devices.	e of l	Unit Test, Pre End Sem Exam	Understanding

# **PREREQUISITES**

	Sr. No.	Unit Number	Prerequisite subject name
	1.	I	Basic Electronics Engineering,
			Basic Mathematics
	2.	C 11 311	Basic Electronics Engineering,
		100	Basic Mathematics
	3.	JE. F	Basic Electronics Engineering,
	/		Basic Mathematics
	4.	<b>9</b>	Basic Electronics Engineering,
	11.5	V '' _	Basic Mathematics
1	5.7	$\sim$ $<$	Basic Electronics Engineering,
l	$\mathcal{L}$		Basic Mathematics, C Programming
[	6.	N=Q	Basic Electronics Engineering,
١,	0	- 4941	Basic Mathematics, C Programming
Ľ	~	m	T JELL IM
l.	LE \	521	N 2212 1-1
١	P- \		1 0/ 1-1
	\ · ·	$\langle \neg$	Frence / Y
	1	× d	5-2 / /
		~ ~	- E TA
		M	Ine - 2/
	_		
	Mod	orn Colli	and of Engineering
	mou	erri ovin	ege or Engineering
		<u>*</u>	Pune - 5 * ======

# **TEACHING PLAN Teaching Plan Short** w. e. f. :- 20/08/2021 Academic Year:-2020-21 Semester:-I Division: A/B Class :-SE Subject :- Logic Design & Computer Organization Subject Code :- 214442 Faculty In charge :- Mrs. Tanmayee Kute & Ms. Poonam Rakibe No. of Lectures/ weeks:3

**Lecture Plan** •

Sr. No.	Unit	Unit/ Topic Name	Start week	End week
1.		Introduction To Digital Electronics	August 3 nd week	August 4 th week
2.	11	Combinational Logic Design	September 1 st week	September 2 nd week
3.	111	Sequential Logic Design	September 3 rd week	September 5 th week
4.	IV	Computer Organization & Processor	October 1 ^{st week}	October 2 nd week
5.	v	Processor Instructions & Processor Enhancements	October 2 nd week	October 4 th week
6.	VI	Memory &Input / Output Systems	November 1 st week	November 3 rd week

# Detail Teaching Plan

Lect. No	Unit No.	Main Topic to be Covered	Sub Topics to be Covered	Reference Books	CO to Attain	Measurable to attain CO	Mode of Delivery
1			Digital IC Characteristics; TTL: Standard TTL characteristics	~	2		Online lecture and PPT
2		Digital Logic families	CMOS: Standard CMOS characteristics	R1 ,T1	Ľ.,		Online lecture and PPT
3			TTL NAND gate, operation of CMOS NAND gate, Comparison of TTL & CMOS.	2	18	$\tilde{2}$	Online lecture and PPT
4		13	Sign Magnitude, 1's complement & 2's complement representation,	R1,11		<u>_</u>	Online lecture and PPT
5		Signed Binary number	unsigned Binary arithmetic (addition, subtraction, multiplication, and division)	\$	- /-	41	Online lecture and PPT
6	I	and Arithmetic	subtraction using 2's complement	2	1 In Sem Exam	Unit Test, Pre In Sem Exam	Online lecture and PPT
7			IEEE Standard 754 Floating point number representations.	R1 ,T1	<	/	Online lecture and PPT
8		Codes	Binary , BCD, octal , hexadecimal , Excess-3 , Gray code	11	۲X		Online lecture and PPT
9			their conversions			Online lecture and PPT	
10			Representation of logic functions: logic statement, truth table, SOP form, POS form	ncine	perir		Online lecture and PPT
11		Logic minimization	Conversion into canonical forms	9.00	2011	-3	Online lecture and PPT
12			Simplification of logical functions using K-Maps up to				Online lecture

·		1	,		,		SE (Semester I)
12			Half- Adder, Full Adder, Half Subtractor, Full	R1 ,T1			Online lecture
13		Design using SSI	Subtractor, n bit Binary adder.				and PPT
		chips	Code converters	T1	-		Online lecture
14							and PPT
							Online lecture
15			Multiplexer (IC 74153), Demultiplexer (IC 74138	R1 ,T1			and PPT
16	П	Introduction to	Deceder (74228) Encoder (IC 74147)	<u> </u>	2	Unit Test, Pre	Online lecture
10		MSI chips	Decoder (74238) Encoder (IC 74147)	~~		In Sem Exam	and PPT
17			Rinary adder (IC 7483)	12			Online lecture
17			binary adder (ic 7485)	CO.			and PPT
18		/	BCD adder & Subtractor using IC 7483	R1 ,T1	$\sim$		Online lecture
10		Design using MSI	beb adder & Subtractor using te 7465	- N	N		and PPT
19		chips	Implementation of logic functions using IC 74153 &	N 1	$(\Omega \setminus$		Online lecture
13		10-	74138.		5		and PPT
		Introduction to	Difference between combinational circuits and	3	$\langle \cup \rangle$		Online lecture
20		sequential	sequential circuits; Memory element-latch & Flip-	T1	$\langle - \rangle$		and PPT
		circuits	Flop.	~	120		
21			Logic diagram, truth table & excitation table of SR, JK,		1000		Online lecture
		101	D, T flip flops				and PPT
22		Labor	Conversion from one FF to another	T1	1-1	1	Online lecture
		10			(		and PPT
23		Flip- Flops	Study of flip flops with regard to asynchronous and	T1 🖊	- N/		Online lecture
	ш	\	synchronous			Unit Test. Pre	
24		N	Preset & Clear, Master Slave configuration		3	In Sem Exam	
				T1			
25			Study of 7474, 7476 flip flop IC	$-\pi$	<		
	Application of		Counters, asynchronous, synchronous and modulo n		1		
26			counters		N		and PPT
			study of 7490 modulus n counter ICs & their		100	-	Online lecture
27			applications to implement mod counters	T1	-	1	and PPT
		пр-поря		inee	rina		Online la sturre
28			Registers- snift register types (SISU, SIPU, PISU	T1			
			APIPOJA applications.				and PPT

				<u>SE (Semester I)</u>
29			organization, functions & types of computer units T1	Online lecture and PPT
30		Computer	CPU(typical organization ,Functions , Types), Memory ( Types & their uses in computer ), IO( types & functions) & system bus( Address, data & control	Online lecture and PPT
31		computer	Typical control lines, Multiple-Bus Hierarchies R2	Online lecture and PPT
32		architecture	Von Neumann & Harvard architecture	Online lecture and PPT
33	IV	/	Instruction cycle Unit Test, Pre	Online lecture and PPT
34		15	Single bus organization of CPU; ALU( ALU signals, End Sem Exar functions & types);	online lecture and PPT
35		Processor	Register (types & functions of user visible, control &     status registers such as general purpose, address     R2     registers, data registers, flags, PC, MAR, MBR, IR)&	Online lecture and PPT
36		0	control unit ( control signals & typical organization of hard wired & micro programmed CU).	Online lecture and PPT
37		Micro Operations	(fetch, indirect, execute, interrupt) and control signals for these micro operations.	Online lecture and PPT
38			elements of machine instruction ; instruction representation (Opcode& mnemonics, Assembly language elements	Online lecture and PPT
39			Instruction Format & 0-1-2-3 address formats, Types R2 of operands	Online lecture and PPT
40	V	Instruction	Addressing modes; Instruction types based on operations (functions & examples of each Unit Test, Press	Online lecture and PPT
41		M	key characteristics of RISC& CISC; Interrupt: its End Sem Exar purpose, types , classes & interrupt handling (ISR , R2 multiple interrupts	Online lecture and PPT
42			exceptions; instruction pipelining( operation & speed up )	Online lecture and PPT
43		Multiprocessor systems	Taxonomy of Parallel Processor Architectures T2	Online lecture and PPT

				SE (Semester I)
44			two types of MIMD clusters & SMP (organization & benefits) & multicore processor (various Alternatives T2 & advantages 0f multicores	Online lecture and PPT
45			typical features of multicore intel core i7 T2	Online lecture and PPT
46	VI	Memory Systems	Characteristics of Memory Systems, Memory     Hierarchy, signals to connect memory to processor,     T2     memory read & write cycle	Online lecture and PPT
47			characteristics of semiconductor memory: SRAM, DRAM &ROM	Online lecture and PPT
48		Cache Memory	Principle of Locality, Organization, Mapping functions, write policies T2 0 Unit Test, Pre 6 End Som Exam	Online lecture and PPT
49			Replacement policies, Multilevel Caches, Cache Coherence,	Online lecture and PPT
50		Input / Output	I/O Module, Programmed I/O, Interrupt Driven I/O, T2	Online lecture and PPT
51		Systems	Direct Memory Access (DMA).	Online lecture and PPT
Ρ	ES's MCOI	E,InformationTechnolo	Modern College of Engineering	Page - 35
			————————————————————————————————————	

# **Books referred:**

- 1. R1: "Digital Design", M Morris Mano, Prentice Hall, Third Edition
- 2. T1: "Modern Digital Electronics", R.P. Jain, Tata McGraw-Hill, Third Edition
- 3. R2: "Computer organization", Hamacher and Zaky, Fifth Edition
- 4. T2: "Computer organization and architecture, designing for performance" by William Stallings, Prentice Hall, Eighth edition



# UNIT WISE QUESTION BANK

# **Unit I: Introduction To Digital Electronics**

Sr.	Question	СО	Marks	University
No.		No.		Year
1	Do the required conversions for the following numbers?		6	
	$(BF8)_{16} = ()_{10}$			
	(1000) ₁₀ = () 8	Sec. 1		
	(377) ₈ = () ₁₆	$\sim$		
	$(1010.11)_{10}=()_2$	15	S	
	$(11100011101)_2 = ()_{10}$	2	N	
	(85.7) ₁₆ = () 8	N.	2	
2	Define the following terms related to logic family: Propagation	$\sim 1$	1.16	
1	delay /	- N	2	
1	Fan out	- \	$\sim$	
1			- Ch	
			1.2.1	
	Noise margin			
3	Convert given numbers in binary form & use 2's complement			May
- L	method to perform following operation		6	2019
	1)(-48)-(+23) 2) –(48)-(-23)	1	- 7/	
4	Explain with diagram CMOS to TTL interface	- /-	6	May
		1	0	2019
5	Use K map technique to realize following expression using	CO1		May
	minimum number of gates		6	2019
	$Y = \sum m(1,2,9,10,11,14,15)$		/	
6	Obtain excess-3 code for (25)10	5 X	2	May 18
7	Convert the following numbers in Binary form:	24		Oct
	(i) $(125.12)10 = (?)2$		6	2018
	(II) $(337.025)8 = (?)2$ (iii) (EDP EA)16 = (2)2		1	
0	(III) (JDD.FA)10 – (!)Z Minimize the given Boolean expression using K maps method			Oct
0	$F(A, B, C, D) = \Sigma m (0, 1, 3, 7, 8, 9, 11, 15).$	and the second	6	2019
0	Draw and Evoluin TTL NAND gate?	еп	HQ-	
9	Draw and Explain TTE NAND gate?		2	1VIA 1 2016
10	Convert decimal 27 into following:			
10	1)Binary			1VIdy 2016
	2)Excess-3		6	2010
	3)Gray		Ŭ	
	4)HEX			

11	Convert decimal 27 into following:		SE (Sem	estern		
	1)Binary		•	2016		
	2)Excess-3		6			
	3)Gray					
	4)HEX					
12	Convert (110101.101010)2 to octal.		2	Dec		
		-	Z	2015		
13	Explain following TTL characteristics:	47		Dec201		
	1)Noise immunity	11	6	5		
	2)High level input voltage	1	U			
	3)Figure of merit					
14	Convert the following number into its equivalent	10	~	May201 4		
	hexadecimal, decimal and binary number1. (357.2)8 2.	. C.	6			
	(453.54)8	~	$A \rightarrow$			
15	Explain TTL characteristics: Speed of operation and Fan out	$\sim$	2	Dec2014		
16	Compare TTL and CMOS logic family		$\sum i 0$	DEC		
	In SKHH2		4.1	2014		
	15/					
	Unit II: Combinational Logic Design					

# Unit II: Combinational Logic Design

Sr.	Question	со	Marks	University
No.		No.		Year
1	Explain working of 16:1 multiplexer	5	6	11
2	Draw and explain 4-bit BCD adder using IC 7483?		6	21
3	Design 12: 1 MUX using 4: 1 MUX		4	$\sim$ /
4	Implement the following Boolean function using 4:1 MUX F (A, B, C, D) = A+ABD+ABC+AB+D		6	
5	Design &Implement 8: 1 MUX using 4:1 MUX F (X, Y, Z )=∑m(1,3,4,7)	4	6	May 2019
6	With the help of circuit diagram explain half Subtractor		8	Dec 2018
7	Implement the following Boolean function using	-		May 17
	single 8:1 multiplexer		6	
	F (A, B, C, D)=∑m(1,4,6,9,13)	602		Contraction of the local division of the loc
8	Design using single 8:1 multiplexer and logic gates:	02	c	May
	F (A, B, C, D)=∑(0,2,5,8,10,15)	ine	0	2016
9	Design Full Subtractor using Decoder IC 74138		6	Nov.15
10	Design Full Adder using 4:1 MUX		4	Dec.1 4
11	Draw and explain the look ahead carry generator		6	May.14
12	Design full adder using suitable decoder?		6	Dec 2013
13	Implement the following Boolean function using 1:8 DEMUX F		2	
	(A, B, C, D) = A + ABD + AB + A		Ζ	
14	Design 16:1 multiplexer using 8:1 multiplexer		6	
15	Define half Subtractor& full Subtractor		8	

16	Explain the circuit diagram of full Subtractor	SE ^Q Sem	ester I)
17	Draw and explain the block diagram and working	ø	
	of 4-bit parallel adder	0	
18	Design 4 bit binary to BCD converter	8	
19	Design logic circuit to convert BCD to gray code	8	

# Unit III: Sequential Logic Design

Sr. No.	Question	CO No.	Marks	University Year
1	What is race around condition? How it can be avoided?	1	C	
	Convert T flip flop into D flip flop	$\sim$	6	
2	Explain applications of T ff	1	2	May 2016
3	Design MOD-11 up counter using IC 74191	7 V	6	Nov2015
4	What is race around condition? Explain with the help of timing	$\sum$	8	May 2015
1	diagram. how it is removed in basic flip flop circuit	$\sim$	0	
5	What do you mean by MSJK FF? Explain advantage of this FF.	- 1	10	May 2014
	Draw circuit diagram & timing diagram		10	1
6	Design JK flipflop using SR flipflop		6	Dec2014
7	Convert JK FF to SR FF		3	Dec2013
8	Explain difference between sequential and			Dec 2013
	combinational circuits? Design SR flip flop using JK flip		6	
1	flop?			/
9	Draw and explain 3-bit asynchronous UP counter. Also draw the	- /	17	
	necessary timing diagram. Compare between synchronous	1	4	
	counter and asynchronous counter?	CO3		
10	Design the following using IC7490:		1	
	(i) MOD 97counter		6	
	(ii) MOD 45counter.	$\sim \Lambda$		
11	What is MOD counter? Draw the internal structure of IC 7490.		6	
	Design MOD 56 counter using IC 7490 & necessary logic gates		Ŭ.,	
12	Draw and explain the working of master slave JK flip flop. Draw		6	
12	excitation table of JK flip flop			
13	What is SR-flip-flop? Convert the basic SR-flip-flop (SR-FF) into:	er	ing	
	(i) JK-FF		6	
	(ii) T-FF 🏋 MUNE - 🤉 🛪 🚃			
	(iii) D-FF.			
14	What is the difference between synchronous counter and			
	asynchronous counter? Design 3-bit synchronous up-		4	
	counter using MS JK-flip-flop			
15	Convert SR FF to JK FF		3	May 2012
11	Discuss method to avoid race around condition in JK flip flop		4	

12	What is SR FF? Explain working of clocked SR flip flop. What is edge triggering?	နှော်(Sem မိန်မှာ ၄၀၂၂
13	Explain application of D flip flop	2
14	Derive excitation tables for SR, D, JK, T flipflops	8
15	Convert SR FF to D FF	3
16	Convert SR FF to T FF	3
17	Design a divide by 96 counters using 7490	6
18	Design MOD 8 counter using IC 7490	6
19	Design a MOD 25 counter using IC 7490	6
20	Design MOD 78 counter using IC 7490	6

# Unit IV: Computer Organization & Processor

	EDUID	/		
Sr.	Question	со	Marks	University
No.		No.		Year
1	Draw and explain single bus processor organization.	$\cap$	6	May June 2019
		· · · ·		
2	Draw and explain processor organization		6	May June 2018
3	Explain control unit and its function along with block diagram?	~	6	May-June 2018
4	What are the functions of control unit? Explain control		$\sim c$	May-June
	unit with block diagram.		6	2017
				/Nov-
			1	Dec2017
5	Draw diagram of single bus processor organization and			May June
	explain		7	2017/NovDec2
			1.000	017
6	What is micro-operation?		4	7 /
7	What are the different types of memory?		4	1
8	What is difference between Von Neumann & Harvard	1	6	/
	architecture?	1	0	r
9	Draw diagram of instruction cycle states of a processor and	CO4		May June
	explain.		6	2017/NovDec2
		$\mathbf{x}$	Λ	017
10	Write a short note on Registers?	1	4	
11	Write a short note on flag Registers?		4	
12	Explain micro-programmed control unit along with block		7	May June
	diagram		/	2017
13	Draw and explain hardwired control unit.	0.0	6	May Jun 2016
14	Explain different control signals used for micro	10.0	4	2
	operation?		4	
15	Explain Von Neumann architecture in detail?		6	
16	Explain Harvard architecture in detail?		6	
17	Write short note on PCI bus?		4	
18	Explain architecture of 8086 processor?		6	

Sr	Question	0	Marks	University
No.		No.	IVIAI KS	Year
1	Differences between RISC and CISC Architecture.	1	c	May-June
		$\sim$	0	2019
2	Explain three addressing mode suitable examples.	22	6	May June
	16-	a	Ľ.	2019
3	What instruction pipelining? How it improves performance of computer?	N.	6	May June 2018
4	Describe in brief any one pipeline hazard and its solution.	$\sim$	<b>.</b>	May June
	5/ / / / / / /	$ \rightarrow $		2018
5	List different Addressing modes and explain any two with			May-June
	suitable diagram and example		6	2017/ Nov- Dec
			-	2017
6	Explain Instruction cycle states with suitable diagram		6	Nov-Dec 2016 7
7	Draw diagram of instruction cycle states of a processor		i mag	May-June
- \	and explain.	/	6	2017/Nov-
		1	$\sim$	Dec2017
8	What are different stages in 5 stage pipelines.	1	1	May June
		CO5	6	2017/NovDec2
		005	/	017
9	What is cluster computing? What are the types of clustering?	2	6	May June 2017
10	Write note on Multi core Architecture	- 1		May June
			7	2017/ Nov Dec
1.00				2017
11	Explain any four addressing modes with suitable diagram		6	Nov-Dec
	Modern College of Engline	er.		2016
12	Which are the basic performance issues in pipelining?			Nov Dec
	——————————————————————————————————————		6	2017,NovDec20
				16
13	Explain instruction format in detail?		4	
14	What are the different types of operands?		6	
15	What is difference between interrupt and exception?		6	
16	How processor handles interrupt?		4	
17	Write short note on features of Intel core i7		4	
18	Write short note on 8086 ALP?		4	

# Unit V: Processor Instructions & Processor Enhancements

# Unit VI : Memory & Input / Output Systems

PES's MCOE, Information Technology

Sr.	Question	СО	Magekese	magniversity
No.		No.	,	Year
1	What are the different Characteristics of Memory Systems?		4	
2	Explain memory read cycle?		6	
3	Explain memory write cycle?		6	
4	Explain characteristics of semiconductor memory?		4	
5	Write short note on SRAM and DRAM?		4	
6	Explain ROM in details?	Station of Stations	4	
7	List and explain cache replacement policy	CO6	6	May June 2019
8	Explain need of cache memory	$\leq$	6	Nov Dec 2016
9	What is cache coherence?	1	4	
10	Write short note on DMA?	11	4	
11	List and explain write policies used in cache memory?		4	May 12
12	Write short note on USB flash drive?	~	6	N



# **HOME ASSIGNMENT**

# **Unit I: Introduction To Digital Electronics**

<b>C</b>	Question	~~~	Marka	University
Sr.	Question	0	<b>Warks</b>	University
No.		No.		Year
1	VZEDUON/		6	
	Convert given numbers in binary form & use 2's complement			
	method to perform following operation	Sec. 1.		
	1)(-48) - (+23) - 2) - (48) - (-23)	200		
2	$\sum_{j=1}^{n} \frac{1}{(1+2)^{j}} \sum_{j=1}^{n} \frac{1}{(1+2)^{j}} $	> >	_	
2	(i) (as tables (a))	C.M. 1	N	
	(1) (125.12) 10 = (?)2	-21	4	
	(ii) (337.025)8 = (?)2	, e.,		
	(iii) (5DB.FA)16 = (?)2	$\sim s$	0.	
3	Explain following TTL characteristics:	$-\chi \gamma$	1.15	May
	1)Noise immunity	N.	(a)	2019
1	2)High level input voltage	CO1	6	
1	3)Figure of merit		0	
4	Convert the following number into its equivalent		1	
	hexadecimal, decimal and binary number		4	
	1. (357.2)8 2. (453.54)8		111	
5	Convert decimal 27 into following:			DEC 2014
- \	1)Binary	1		
	2)Excess-3	- /	4	
	3)Grav	1	$\nabla I$	
	4)HFX	1	1	
		f		

# Unit II: Combinational Logic Design

	Unit II: Combinational Logic Design	<u> </u>		
Sr. No.	Question	CO No.	Marks	University Year
1	Implement the following Boolean function using single 8:1 multiplexer F (A, B, C, D)=∑m(1,4,6,9,13)		6	
2	Implement the following Boolean function using 1:8 DEMUX F (A, B, C, D) = A+ABD+AB+A	eri	4	
3	Design logic circuit to convert BCD to gray code	02	6	
4	Draw and explain the block diagram and working of 4-bit parallel adder		6	May 2019
5	Draw and explain the look ahead carry generator		8	

# Unit III: Sequential Logic Design

Sr. No.	Question	CO No.	Magekese	m <b>୍ୟୁଲ୍ivjęrsity</b> Year
1	Draw and explain 3-bit asynchronous UP counter. Also draw the necessary timing diagram		6	
2	What is MOD counter? Draw the internal structure of IC 7490.		6	
3	Convert JK FF to SR FF	03	6	
4	Design a MOD 25 counter using IC 7490		4	
5	Derive excitation tables for SR, D, JK, T flipflops		2	May 2016

# **Unit IV: Computer Organization & Processor**

Sr.	Question	СО	Marks	University
NO.		No.		Year
1	What is micro-operation?	-	6	May-June 2018
2	Write a short note on flag Registers?			May June
		<b>CO</b> 4	7	2017/NovDec2
		CO4		017
3	Explain different control signals used for micro-operation?	-	4	
4	Write a short note on flag Registers?		6	
5	Explain Harvard architecture in detail?		4	

## **Unit V: Processor Instructions & Processor Enhancements**

Sr. No.	Question	CO No.	Marks	University Year
1	Write note on Multi core Architecture		6	May-June 2019
2	Which are the basic performance issues in pipelining?			May-June
		C06	6	2017/ Nov- Dec
		000		2017
3	Write short note on features of Intel core i7		4	
4	What is difference between interrupt and exception?	·	4	
5	Explain any four addressing modes with suitable diagram		4	

# Unit VI: Memory & Input / Output Systems

Sr. No.	Question	CO No.	Marks	University Year
1	Write short note on USB flash drive?	CO6	6	
2	Explain need of cache memory		6	

3	Write short note on SRAM and DRAM?	<b>∮</b> E (Se	mester I)
4	What is cache coherence?	4	
5	Explain memory write cycle?	6	



# **ADDITIONAL RESOURCES**

- 2 Modern College of Engineering = * Pune - 5 * ====
- NPTEL Online Course Computer Organization & Architecture

PES's MCOE, Information Technology



PES's MCOE, Information Technology
## **SYLLABUS**

#### **Unit I - Introduction**

**Introduction to Data Structures:** Concept of data, Data object, Data structure, Concept of Primitive and non-primitive, linear and Nonlinear, static and dynamic, persistent and ephemeral data structures, Definition of ADT **Analysis of algorithm:** Frequency count and its importance in analysis of an algorithm, Time complexity & Space complexity of an algorithm Big 'O', ' $\Omega$ ' and ' $\Theta$ ' notations, **Sequential Organization:** Single and multidimensional array and address calculation. **Linked Organization:** Concept of linked organization, Singly Linked List, Doubly Linked List, Circular Linked List (Operations: Create, Display, Search, Insert, Delete).

**Case Study : Set Operation, String Operation** 

### **Unit II - Searching and Sorting**

**Searching and sorting:** Need of searching and sorting, Concept of internal and external sorting, sort stability, Searching methods: Linear and binary search algorithms, Fibonacci Series.

**Sorting methods:** Bubble, insertion, Quick, Merge, shell and comparison of all sorting methods. Analyze Insertion sort, Quick Sort, binary search, hashing for Best, Worst and Average case.

Case Study : Study and Analyze Selection sort, bucket sort, radix sort.

#### **Unit III - Stack & Queue**

**Stack:** Concept of stack, Concept of implicit and explicit stack, stack as an ADT using sequential and linked organization, Applications of stack: recursion, converting expressions from infix to postfix or prefix form, evaluating postfix or prefix form.

**Queue:** Concept of queues as ADT, Implementation of queue using array and linked organization, Concept of circular queue, double ended queue, Applications of queue: priority queue.

Case Study : Reversing a string, balanced parentheses in algebraic expressions, Towers of Hanoi problem, double ended queue as Stack and Queue.

#### Unit IV - Trees

**Tree :** Trees and binary trees-concept and terminology, Expression tree, Binary tree as an ADT, , Binary search tree, Recursive and Non recursive algorithms for binary tree traversals ,Binary search tree as ADT(Insert Search Delete, level wise Display)

**Threaded binary tree:** Concept of threaded binary tree (inorder, preorder and postorder). Preorder and In-order traversals of in-order threaded binary tree, Applications of trees.

Case Study : Construction of BST from pre and postorder traversal, Expression Tree construction.

## Unit V - Graph and Symbol Table

**Graph** - Concept and terminologies, Graph as an ADT, Representation of graphs using adjacency matrix and adjacency list, Breadth First Search traversal, Depth First Search traversal, Prim's and Kruskal's algorithms for minimum spanning tree, Shortest path using Dijkstra's algorithm, topological sorting.

**Symbol Table -** Notion of Symbol Table, OBST, AVL Trees Heap: Heap data structure, Min and Max Heap, Heap sort, applications of heap

Case Study : Consider a network of computers connected to each other. The connection has various parameters associated with it as distance, propagation delay, bandwidth (capacity of carrying data), etc. Based on these parameters, decide which path should be chosen to send data from one computer to every other on the network. In a system, jobs are submitted for execution at different times. If the system is idle, the job is taken for execution immediately. If there is a job in execution, the newly submitted job is added to a queue. The jobs are assigned a number, which indicates the priority of the jobs. The system must execute the high priority jobs first for execution. Implement the above said system using heap data structure.

## **Unit VI - Hashing and File Organization**

Hashing: Hash tables and scattered tables: Basic concepts, hash function, characteristics of good hash function, Different key-to-address transformations techniques, synonyms or collisions, collision resolution techniques- linear probing, quadratic probing, rehashing, chaining with and without replacement. File: Concept of File, File types and file organization (sequential, index sequential and Direct Access), Comparison of different file organizations. Case Study : What are the advantages of binary tree and binary search in file handling? Study Hashing techniques for expandable Files(Extendible, Dynamic and Linear Hashing)

### **Text Books:**

1. E. Horowitz, S. Sahni, D. Mehta, "Fundamentals of Data Structures in C++", Galgotia Book Source, New Delhi, 1995, ISBN 16782928

2. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", 2nd Edition, Prentice Hall of India, 2002, ISBN-81-203-1177-9

## **Reference Books:**

 G. A.V, PAI, "Data Structures and Algorithms ", McGraw Hill, ISBN -13: 978-0-07-066726-6
 A. Tharp ,"File Organization and Processing", 2008 , Willey India edition,

2. A. Tharp ,"File Organization and Processing", 2008 ,Willey India edition 9788126518685

 M. Folk, B. Zoellick, G. Riccardi, "File Structure An Object Oriented Approach with C++", Pearson Education, 2002, ISBN 81 - 7808 - 131 - 8.
 M. Welss, "Data Structures and Algorithm Analysis in C++", 2nd edition, Pearson Education, 2002, ISBN 81-7808-670-0



		COURSE O	<u>UTCOMES</u>		
CO No.	Course	Outcome	Mapping With Unit/ Assignment	∟ Assessment Technique	Bloom's Taxonomy Category
C214443.1	Perform basic ar algorithms with and space compl	nalysis of respect to time lexity	ALL	Unit Test	L : III Apply
C214443.2	Select appropria and/or sorting te application deve	te searching chniques in the lopment.	II, IV, V	Unit Test	L : III Apply
C214443.3	Implement abst (ADT) and data given application	ract data type structures for n	I, III, IV, V, VI	Unit Test	L : III Apply
C214443.4	Design algorithr techniques like b divide and conqu	ns based on orute -force, uer, greedy, etc	II, III, V	Unit Test	L : III Apply
C214443.5	Apply knowled learned algorithm techniques and c solve problems.	ge to implement n design lata structures to	ALL	Unit Test	L : III Apply
C214443.6	Design differen functions and us organizations.	t hashing e files	Jy j	Unit Test	L : III Apply

٦

 $\star$ 



Ur

## **PREREQUISITES**

	Sr. No.	Unit Number	Prerequisite Subject name
	1	FE	Fundamental knowledge of programming language and basics of algorithms
	2	LE	DUCA
	3	NH-	
	15	IV	Discrete Mathematics,
	141	5	Fundamental knowledge of programming language and basics of algorithms
	00		
	C 6	SVEJ	Fundamental knowledge of programming language and basics of algorithms
1	17	J	B3 / 7
	X	PL	ne - 5 *
	Mode	rn Colle	ege of Engineering
			Pune - 5 *

## **TEACHING PLAN**

**Teaching Plan Short** 

Academic Year:- 2021-22 Class : - SE Semester :- I

Subject :- Data Structures and Algorithms

Faculty In charge :- Mrs. S.A.Kulkarni, Ms. Supriya Jagtap

• Lecture Plan

w. e. f. :- 5-7-2021 Division: A/B <u>Subject Code</u> :- 214443 <u>No. of Lectures/ week</u>s: 4

Sr. No.	Unit No.	Unit Name/ Topic Name	Unit Name/ Topic Name Start Week	
1	- I /	Introduction	August 3rd Week	August 5th Week
2	- Web	Searching and Sorting	September 1st Week	September 2nd Week
3	m	Stack & Queue	September 3rd Week	September 4th Week
4	IV	Trees	September 5th Week	October 1st Week
5	V	Graph and Symbol Table	October 2nd Week	October 3rd Week
6	VI	Hashing and File Organization	October 4th Week	November 2nd Week



			Detail Teaching Plan	
Lect No.	Unit No.	Main topic to be covered	Sub topics to be coveredChapter no. & Reference BookCO to AttainMeasurable to attain CO	Mode of Delivery
1		Introduction to Data Structures	Concept of data, Data object, Data structure, Concept of Primitive and non-primitive, linear and Nonlinear, static and dynamic, persistent and ephemeral data structures, Definition of ADT	PPT
2	Ι	Analysis of algorithm	Frequency count and its importance in analysis of an algorithm, Time complexity & Space complexity of an algorithm Big 'O', ' $\Omega$ ' and ' $\Theta$ ' notationsT1 : Chapter 1 CO1, CO2, CO3CO1, Unit Test 1	PPT
3		Sequential Organization	Single and multidimensional array and address calculation.T1 : Chapter 1, 2	PPT
4		Linked Organization	Concept of linked organization, Singly Linked List, (Operations: Create, Display, Search, Insert, Delete) T1 : Chapter 5, T3 :	PPT
5		Mod	Doubly Linked List (Operations: Create, Display, Search, Insert, Delete)	PPT

-

DL (Duniester 1)	SE	(Semester	I)
------------------	----	-----------	----

6			Circular Linked List (Operations: Create, Display, Search, Insert, Delete)	РРТ
7		Searching and sorting	Need of searching and sorting, Concept of internal and external sorting, sortT1 : Chapter 13stability, Searching methods: Linear and binary search algorithms, Fibonacci Series.T1 : Chapter 13	PPT
8		15	Bubble Sort, insertion Sort	PPT
9	II	191	Quick Sort CO2, Unit Test 2	PPT
10		0	Merge Sort CO4, CO5	PPT
11		Sorting methods	Shell Sort T1 : Chapter 1, 2 T3	PPT
12			comparison of all sorting       : Chapter 7         methods, Analyze Insertion sort,       Quick Sort, binary search, hashing         for Best, Worst and Average case.	РРТ
13	III	Stack	Concept of stack, Concept of implicit and explicit stack, Applications of stack: recursionCO1, T1 : Chapter 3, T3 :CO1, 	PPT
14		Mod	stack as an ADT using sequential and linked organization	PPT

15		converting express to postfix	ions from infix	PPT
16		Converting express to prefix form	sions from infix	PPT
17		Evaluating postfix	or prefix form.	PPT
18		Concept of queues Implementation of array and linked or	as ADT, queue using ganization	PPT
19		Queue Concept of circular	r queue T1 : Chapter 4, T3 :	PPT
20		Double ended queu	le	PPT
21		Applications of que queue.	eue: priority	PPT
22		Trees and binary tr and terminology, E Binary search tree	rees-concept Expression tree,	PPT
23	IV	Binary tree as an A algorithms for bina traversals	ADT, Recursive ary tree T2 : Chapter 5 CO1, CO2, CO3, CO5	Fest 4 PPT
24		Non recursive algo binary tree traversa	orithms for als	PPT
25		Binary search tree	Pune 5 *	PPT

26       Concept of threaded binary tree (inorder, preorder and postorder); . Applications of trees.       Video         27       Threaded binary tree       Preorder traversals of in-order threaded binary tree.       PPT         28       In-order traversals of in-order threaded binary tree.       PPT         29       In-order traversals of in-order threaded binary tree.       PPT         29       Concept and terminologies, Graph as an ADT, Representation of graphs using adjacency matrix and adjacency list       PPT         30       Graph       Breadth First Search traversal, Depth First Search traversal.       T2 : Chapter 6       CO1, CO2, CO3, CO4, GO5       PPT         31       V       Shortest path using Dijkstra's algorithm, topological sorting.       T1 : Chapter 9       PPT + Video         33       Symbol Table       OBST       T1 : Chapter 9       OETH G       PPT + Video		1		
26       Image: Concept of threaded binary tree (inorder, preorder and postorder). Applications of trees.       Video         27       Threaded binary tree       Preorder traversals of in-order threaded binary tree       PPT         28       In-order traversals of in-order threaded binary tree       PPT       PPT         28       In-order traversals of in-order threaded binary tree       PPT       PPT         29       Concept and terminologies, Graph as an ADT, Representation of graphs using adjacency matrix and adjacency Ist       PPT       PPT         30       Graph       Breadth First Search traversal, Depth First Search traversal, Depth First Search traversal, Stort status and adjacency Ist       T2 : Chapter 6       CO1, CO2, CO3, CO4, CO5       PPT         31       V       Shortest path using Dijkstra's algorithms for minimum spanning tree       CO4, CO5       PPT         33       Symbol Table       Notion of Symbol Table, OBST       T1 : Chapter 9       PT + Video         34       OBST       OBST       T1 : Chapter 9       PT + Video			ADT(Insert Search Delete, level wise Display)	
27       Threaded binary tree       Preordet traversals of in-order threaded binary tree       PPT         28       In-order traversals of in-order threaded binary tree       PPT         29       Image: Concept and terminologies, Graph as an ADT, Representation of graphs using adjacency matrix and adjacency list       PPT         30       Graph       Breadth First Search traversal, Depth First Search traversal       T2 : Chapter 6       CO1, CO2, CO3, CO3, CO4, CO5       PPT         31       V       Shortest path using Dijkstra's algorithms for minimum spanning tree       CO5       PPT       PPT         33       Motion of Symbol Table, OBST       T1 : Chapter 9       PPT + Video       PPT + Video         34       OBST       T1 : Chapter 9       PPT + Video       PPT + Video	26		Concept of threaded binary tree (inorder, preorder and postorder). , Applications of trees.	Video
28     In-order traversals of in-order threaded binary tree     PPT       29     Concept and terminologies, Graph as an ADT, Representation of graphs using adjacency matrix and adjacency list     PPT       30     Graph     Breadth First Search traversal, Depth First Search traversal     T2 : Chapter 6       31     V     Prim's and Kruskal's algorithms for minimum spanning tree     CO1, CO2, CO3, CO4, CO5     Unit Test 5       32     Shortest path using Dijkstra's algorithm, topological sorting.     T1 : Chapter 9     PPT + Video       34     OBST     T1 : Chapter 9     PPT + Video	27	Threaded binary tree	Preorder traversals of in-order threaded binary tree	PPT
29Concept and terminologies, Graph as an ADT, Representation of graphs using adjacency matrix and adjacency listPPT30GraphBreadth First Search traversal, Depth First Search traversalT2 : Chapter 6C01, C02, C03, C04, C05PPT31VPrim's and Kruskal's algorithms for minimum spanning treeT2 : Chapter 6C01, C02, C03, C04, C05PPT32Shortest path using Dijkstra's algorithm, topological sorting.Notion of Symbol Table, OBSTT1 : Chapter 9PPT + Video34OBSTOBSTT1 : Chapter 9PPT + Video	28	12	In-order traversals of in-order threaded binary tree	PPT
30GraphBreadth First Search traversal, Depth First Search traversalT2 : Chapter 6CO1, CO2, CO3, CO4, CO5PPT31VPrim's and Kruskal's algorithms for minimum spanning treeT2 : Chapter 6CO1, CO2, CO3, CO4, CO5PPT32Shortest path using Dijkstra's algorithm, topological sorting.Notion of Symbol Table, OBSTPPT + VideoPPT + Video33Symbol TableOBSTT1 : Chapter 9PPT + Video	29	100 00	Concept and terminologies, Graph as an ADT, Representation of graphs using adjacency matrix and adjacency list	PPT
31VPrim's and Kruskal's algorithms for minimum spanning treeCO2, CO3, CO4, CO5Unit Test 5PPT32Shortest path using Dijkstra's algorithm, topological sorting.Shortest path using Dijkstra's algorithm, topological sorting.PTPPT33Notion of Symbol Table, OBSTT1: Chapter 9PPT + VideoPPT + Video34OBSTT1: Chapter 9PPT + Video	30	Graph	Breadth First Search traversal, Depth First Search traversalT2 : Chapter 6CO1,	PPT
32     Shortest path using Dijkstra's algorithm, topological sorting.     CO4, CO5     PPT       33     Notion of Symbol Table, OBST     PPT + Video     PPT + Video       34     OBST     OBST     PPT + Video	31	v	Prim's and Kruskal's algorithms for minimum spanning tree CO2, CO3, Unit Test 5	PPT
33     Notion of Symbol Table, OBST     PPT + Video       34     Symbol Table     T1 : Chapter 9       34     OBST     OBST	32		Shortest path using Dijkstra's algorithm, topological sorting.	PPT
34 Symbol Table OBST COLLEGE TI: Chapter 9 PPT + Video	33	0.1.17.11	Notion of Symbol Table, OBST	PPT + Video
W MILLIO - 3 W	34	Symbol Table	OBST College of Engineering	PPT + Video

35		AVL Trees	PPT + Video
36		AVL Trees	PPT + Video
37		Heap data structure, Min and Max Heap	PPT + Video
38		Heap sort, applications of heap	PPT + Video
39		Hash tables and scattered tables: Basic concepts, hash function, characteristics of good hash function	PPT + Video
40		Different key-to-address transformations techniques, synonyms or collision	PPT + Video
41	VI H	Hashingcollision resolution techniques- linear probing, quadratic probing, rehashingT1 : Chapter 9CO3, CO5, CO6Unit Test 6	PPT + Video
42		Chaining with replacement	PPT + Video
43		Chaining without replacement	PPT + Video



## **UNIT WISE QUESTION BANK**

		L		
Sr. No.	Question	CO No.	Marks	University Year
1	Discuss in detail the different asymptotic notations used to represent time complexity of an algorithm.	C214443.1	6	May 2019
2	What is the time complexity of an algorithm? Explain its importance with suitable example.	C214443.1	3	May 2018
3	Explain linear and non-linear data structure with suitable examples	C214443.5	3	May 2018
4	W.r.t. the Algorithm analysis, explain following terms: i. Big Oh notation ii. Omega notation	C214443.1	6	May 2018
5	Define: i. Data and data object ii. Abstract Data Types	C214443.3	6	Dec 2017
6	Differentiate between the following: i. Primitive and non- primitive data structures. ii. Linear and non-linear data structures	C214443.5	6	Dec 2017
7	Define: i. Data and data object ii. Data Structure iii. Abstract Data Types	C214443.5	*	May 2017
8	<ul><li>W.r.t. the Algorithm analysis, explain following terms:</li><li>i. Big Oh notation ii. Theta notation.</li></ul>	C214443.1	ginee	May 2017
9	Define: i. Data and data object ii. Data Structure	C214443.3	6	Dec 2016
10	Differentiate between the following:		6	Dec 2016

	<ul> <li>i. Primitive and non- primitive data structures.</li> <li>ii. Linear and non-linear data structures</li> <li>iii. Static and Dynamic Data</li> </ul>	ते भव		
11	Structures Explain row major and column major representation of arrays.	C214443.5	5	May 2018
12	What is sequential memory organization? List advantages and dis- advantages of sequential memory organization.	C214443.5	- 0	May 2018
13	Explain the address calculation of elements in arrays in row major and column major representation.	C214443.5	5	May 2018
14	Explain the concept of row major and column major representation of a matrix with example.	C214443.5	6	Dec 2017
15	Explain 2D array in detail with row and column major representation and address calculation in both the cases.	C214443.5	6	May 2017
16	Explain sequential memory organization with example	C214443.5	6	Dec 2016
17	Explain 2D array in detail with row and column major representation and address calculation in both the cases.	C214443.5	*	Dec 2016
18	What is ADT? Explain singly linked list as ADT.	C214443.3	6 ninee	May 2019
19	Explain with example.Doubly Linked List	C214443.5	6	May 2019
20	Write C function for inserting and deleting a node of SLL	C214443.5	6	May 2019

21	Compare linked list with arrays with reference to the following aspects:	C214443.5		May 2018
	i. Accessing any element randomly.		6	
	<ul><li>ii. Insertion and deletion of an element.</li><li>iii. Utilization of memory.</li></ul>	1 44	17	
22	Write a pseudo code to delete a node from SLL.	C214443.5	77	May 2018
23	Write a pseudo code to insert a node at start and at end in DLL.	C214443.5	7	May 2018
24	Write short notes on i. CLL ii. DLL iii. SLL iv. Skip List	C214443,5	8	Dec 2017
25	Write a 'C' function to reverse a singly linked list using three pointers.	C214443.5	74	Dec 2017
26	Differentiate between sequential and linked organization	C214443.5	4	Dec 2017
27	Write C function to insert a node and delete a node in DLL.	C214443.5	7	May 2017
28	Explain with suitable example: i. CLL	C214443.5	6	May 2017
	ii. Linked list as an ADT.	of En	ainee	ring
29	Write C pseudo algorithm for merging of two sorted Linked Linked lists into the third one.	C214443.5	7	May 2017
30	What are advantages of Linked list over array. Describe different types of linked lists.	C214443.5	7	Dec 2016

## Unit II

Sr. No.	Question	CO No.	Marks	University Year
1	With example discuss the criteria for choosing a sorting algorithm based on the input size and time complexity [Bubble, Insertion, Quick]	C214443.2	6	May 2019
2	For the following set of numbers, perform stepwise demonstration of merge sort algorithm : 91 23 48 13 97 63 27 36 57	C214443.2	6	May 2019
3	Show the output of each pass using insertion sort to arrange the following numbers in ascending order. 150 350 100 250 200 50 300	C214443.2	3	May 2018
4	Explain the importance of searching and sorting in computer science field. What is sort stability?	C214443.2	4	May 2018
5	With example discuss the criteria for choosing a sorting algorithm based on the input size and time complexity [Bubble, Insertion, Quick]	C214443.2	6	May 2019
6	For the following set of numbers, perform stepwise demonstration of merge sort algorithm : 91 23 48 13 97 63 27 36 57	C214443.2	6	May 2019
7	Show the output of each pass using insertion sort to arrange the following numbers in ascending order.	C214443.2	ginee 6	May 2018
	150 350 100 250 200 50 300			
8	Explain the importance of searching and sorting in computer	C214443.2	4	May 2018

	science field. What is sort stability?			
9	What is importance of pivot element in quick sort?	C214443.2	2	May 2018
10	Write an algorithm to sort a list of integers using bubble sort. Show output of each pass for	C214443.2	6	Dec 2017
	the following lsit : 10 5 4 18 17 1 2.	UCA	X	
11	Differentiate between the following: i. Internal sorting and External sorting	C214443.2	6	Dec 2017
	ii. Linear and binary searching	AR.	1	2
12	Write pseudo C Algorithm for i. Linear Search ii. Binary Search	C214443.2	S,	May 2017
13	Explain the selection sort with given example by showing all passes. Also analyze the time complexity. Numbers are : 17 35 24 13 26 14	C214443.2	7	May 2017
14	Sort the following and show the status of every pass using Selection sort: 34 9 78 65 12 -5	C214443.2	6	Dec 2016
15	Sort following data to ascending order using Quick sort. Show all passes with pivot. 17 8 -9 2 0 -5 7 20 11 15	c214443.2	ginee	Dec 2016

# Whit III

Sr. No.	Question	CO No.	Marks	University Year
1	Write a C++ function to-convert infix expression to postfix expression.	C214443.5	6	May-2018





	i) (A+B) * C - D *			
	F + C			
	ii) (A-2) *(B+C-			
	D*E) * F			
	Explain the implementation of circular			
11	queue using sequential organization	C214443.5	6	May 2015
	Implement stack as ADT using linked	T STALL	and the state of t	
12	organization	C214443.3	6	May 2015
	Define Multiqueues		117	
13	V EDI	C214443.5	2	May 2015

Unit IV					
Sr. No.	Question	CO No.	Marks	University Year	
	Construct a binary tree from the given traversal i) Preorder =>* +a-be/-de-+fgh Inorder : a+ b-c*de/f+g-h ii) Inorder : H, D, I, B, E, A, J, F, A,J,F,K,C,G Postorder : H, I, D, E, B, J, K,F, G,C, A	C214443.5	6	May 2018	
2	Write non-recursive algorithm to find the post order traversal of a binary tree	C214443.5	6	Dec 2017	
3	Clearly indicate the contents of stack during conversion of given infix expression to prefix: A+(B*((D-E%F) / H)	C214443.5	6 ★	May-2017	
4	Imagine the content of queue Q1 & Q2 are as shown. What would be the content of Q3 after after the following code is executed? Show pictorial representation of both Q1 Q2 with value of front & rear. The queue contents are shown front(left) to rear (right) Q1: 42 30 41 30 19 20 25 14 10 11 12 15 Q2: 3 5 7 4 13 1. $O3 = createOueue()$	C214443.5	ginee	May 2018, December 2017	



	ii) ABC + *CBA - +				
7	Clearly indicate the contents of stack during conversion of given infix expression to prefix. Consider ^ as a	C214443.5	6	December 2016	
	exponent operator. $A^{*}(B-C)/E^{F} + G$	1 49	in		
8	Explain the concept of multi queue, Double ended queue and Priority queue	C214443.5	6	December 2016	
9	Implement stack as ADT using sequential organization	C214443.3	6	December 2016	
10	Change the following infix to postfix using stack. Clearly indicate the content of stack: i) $(A+B) * C - D *$ F + C ii) $(A-2) * (B+C-$ D*E) * F	C214443.5	6	May 2015	
11	Explain the implementation of circular queue using sequential organization	C214443.5	6	May 2015	
12	Implement stack as ADT using linked organization	C214443.3	6	May 2015	
13	Define Multiqueues	C214443.5	2	May 2015	
Unit V					

## Unit V

Sr. No.	Question	CO No.	Marks	University Year
1.	Write the pseudo code for Kruskal's Algorithm	C214443.4	6	May 2017
2	Write a Kruskal's Algorithm and find minimum spanning tree for the following- graph:	C214443.5	6	May 2018

		$ \begin{array}{c} 14 \\ 0 \\ 28 \\ 14 \\ 16 \\ 25 \\ 24 \\ 4 \\ 22 \\ 3 \\ 12 \\ 3 \\ 12 \\ 28 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	AA CA	N/O	
3	1000	For the following graph find the DFS and BFS using suitable data structure $ \begin{array}{c c}                                    $	C214443.5	4	May 2017
4	$\langle$	Write Short note on Topological Sorting	C214443.4	4	Nov 2016
5	_	Define graph. Draw graph from given adjacency matrix and then draw adjacency list with adjacent nodes for given vertices	C214443.5	8	May 2015
6	đ	Represent any one Graph using Adjancy List.	C214443.5	4	
7	N	Compare DFS and BFS with example.	C214443.5		ing
8	_	Write a code for DFS and BFS using C++ Concept	C214443.5	8	-
9		What is Symbol Table? Give Symbol Table ADT.	C214443.5	4	May 2018

10	Show stepwise construction of maxheap for data:	C214443.5	8	May 2018
	40,50,10,00,20,50,70			
11	Construct AVL for the following data : NAR, MAY NOV, AUG, APR, JAN, DEC, JUN, FEB, JUL, OCT, SEP. Show	C214443.5	10	May 2018
	the balance factor of each node and type	0	5	
	of rotation.	64.		
12	Obtain an AVL tree by inserting one data element at a time in the following sequence:	C214443.5	8	May 2017
	191 ~~~		- N P	r 🔪 👘
	50,55,60,1510,40,20,45,30,70,80	1	N	10.
/	IV/ NLA	15	1	011
- /-	Lable the rotation at each stage appropriately.	Пć~_		0
13	Explain the properties of AVL tree.	C214443.5	4	0

## Unit VI

Т

10 M.

Sr.	Question	CO No.	Mar	Univers
1	What are the characteristics of good hash function ? List out different techniques to resolve collision in hash table. Explain linear probing with and without replacement with suitable example	C214443.6	6	May 2017
2	What do you mean by hash table.	C214443.6	/	
3	What is the different collision resolution technique for hash table.	C214443.6	6	May 2015
4	What are the different hashing function explain with example.	C214443.6	/	-
5	Write a C++ program to read character from the keyboard and write in text file	C214443.6	419	May 2018
6	Explain various operations on sequential file in detail	C214443.6	8	May 2018
7	What is File? Explain different File opening mode in C++.	C214443.6	6	May 2018
8	Explain various file opening mode in C++ with respect to text and binary files.	C214443.6	6	May 2017

der Ma

9	What are the primitive operation on sequential files? Explain with example.	C214443.6	6	May 2017
10	Compare the features of sequential files, index sequential files and direct access file	C214443.6	6	May 2017
11	Write C++ program to perform following operations on direct access file: i) Create and display record ii) Insert record	C214443.6	6	May 2017
12	Explain how record are logically deleted from a file	C214443.6	6	May 2016
13	Explain the following C++ file function with syntax and example i) Create file ii) Read (data and record from file) iii) Delete file	C214443.6	5	May 2016
		, , ,		

Modern College of Engineering

*une* 

PES's MCOE, Information Technology

大











<mark>Unit VI</mark>



## **QUESTION BANK (MCQ)**

Sr. No.	Question	Mar	CO	Com
		ks	No.	plexi
				ty
	CURTERIAL AR			Level
	Unit I			
1	Stock is	1		T
1.	A) Enhemeral DS	5. I .	C21444	1
	B) Persistent DS	$\sim c$	3.1	
	C) Primary DS	6.47		
	D) d. None of the above	2	N	
2.	The worst case occurs in linear search algorithm when	1	10	Ι
	A) Item is not in the array at all	$\mathcal{N} \mathcal{C}$	C21444	
	B) Item is somewhere in the middle of the array	10	3.1	
	C) Item is the last element in the array	- 11	$\sim$	
	D) Item is the last element in the array or item is not there at all	- \	$\sim$	
3.	The correctness and appropriateness of	1	5	Ι
	checked very easily.		C21444	
	A) algorithmic solution		3.1	
	B) heuristic solution			
	C) random solution	- 1		
	D) none of these		. / mg	
4.	The main measure for efficiency algorithm are-	_1	24	Ι
	A) Processor and Memory	/	C21444	
	B) Complexity and Capacity		3.1	
	C) Data and Space		1	
	D) Time and space			_
5.	The complexity of the bubble sort algorithm is	_1	CO1 4 4 4	Ι
	A) O(n)	r 7,	C21444	
	B) O(logn)		5.1	
	C) $O(n2)$		No. of Concession, Name	
	D) D. O(n logn)	1		т
6.	In doubly linked lists	eru	C21444	1
	A) a pointer is maintained to store both next and previous nodes.		2 5	
	B) two pointers are maintained to store next and previous nodes. C a pointer to solf is maintained for each node		5.5	
	D) none of the above			
7	What are the advantages of arrays?	1		T
/.	A) Objects of mixed data types can be stored	1	C21444	1
	B) Elements in an array cannot be sorted		3.5	
	C) Index of first element of an array is 1			
	D) Easier to store elements of same data type			
L	D) Lusier to store elements of sume data type		l	1

8.	What differentiates a circular linked list from a normal linked list?	1	<b>G2</b> 1444	Ι
	A) You cannot have the 'next' pointer point to null in a circular linked		C21444	
	list		3.5	
	B) It is faster to traverse the circular linked list			
	C) You may or may not have the 'next' pointer point to null in a			
	circular linked list			
	D) All of the mentioned			
9.	Which of the following case does not exist in complexity theory?	1	~ ~ ~ ~ ~ ~ ~	Ι
	A) Average Case		C21444	
	B) NULL Case		3.1	
	C) Best Case			
	D) Worst Case	~		
10.	The time factor when determining the efficiency of algorithm is	1	~ ~ ~ ~ ~ ~ ~	Ι
	measured by:	1.4	C21444	
	A) Counting microseconds	2	3.1	
	B) Counting the number of statements	ст	1.	
	C) Counting the number of key operations	$\mathcal{N}$	$\gamma$	
	D) Counting the kilobytes of algorithm operations	1.1		
11.	The time complexity of a quick sort algorithm which makes use of	1	$(\mathcal{A})$	II
	median, found by an O(n) algorithm, as pivot element is	- N	C21444	
	A) O(n log logn)	- 1	3.1	
	B) O(nlogn)			
	C) $O(n^2)$		mm /	
	D) O(n)		1111	
12.	In total, how many times inner for loop will get executed?	1		Π
	#include <stdio.h></stdio.h>	1.	C21444	
	void main()	1	3.1	
		/	1	
	int i,j;	C	1	
	clrscr();		/	
	for(i=0;i<3;i++)	1		
		1		
	for(j=0;j<3;j++)	1		
	if(i=0&&j==0)	- N		
	break;		Sec. 1	
	printf(" i = % d", i);		- 10 miles	
	But a dama the line of the second second			
	printf(" i = %d",i);	eru	na i	
	getch();		- O	
	3			
	A) 9			
	B) 12			
	C) 3			
	D) 4			

	-			
13.	Complexity of linear search algorithm is	1	CO1444	II
	$ \begin{array}{c} A) O(n) \\ B) O(l) \end{array} $		C21444	
	B) O(logn)		5.1	
	$(C) O(n^2)$			
	D) O(n logn)			
14.	Linked lists are not suitable for the implementation of?	1	C21444	Ш
	A) Insertion sort		C21444	
	B) Radix sort		3.2	
	C) Polynomial manipulation			
	D) Binary search			
15.	Linked list data structure offers considerable saving in	1	001444	II
		~	C21444	
	A) Computational Time	$\sim c$	3.1	
	B) Space Utilization	10		
	C) Space Utilization and Computational Time	1	$\sim$	
	D) Speed Utilization		~ ~	
16.	What is the functionality of the following code?	10	$\gamma$	II
	void function(Node node)	1.7	C21444	
		1	3.5	
	if(size == 0)	1	-	
	head = node;	1	C 7 1	
	else			
			mm I	
	Node temp,cur;	1		
	<pre>for(cur = head; (temp = cur.getNext())!=null; cur =</pre>	1	-11	
	temp);	1.	11	
	cur.setNext(node);	1.	$\sim /$	
		1	1/	
	size++;	*	/	
			/	
	A) Inserting a node at the beginning of the list	1		
	B) Deleting a node at the beginning of the list	1		
	C) Inserting a node at the end of the list	1		
	D) Deleting a node at the end of the list	- N.		
17.	What is the time complexity of searching for an element in a circular	1		II
	linked list?		C21444	
	A) O(n)		3.1	
	B) O(nlogn)	eru	na L	
	C) O(1)	101111	.2	
	D) O(n2)			
18.	Which of the following applications makes use of a circular linked	1		II
	list?		C21444	
	A) Undo operations in text editor		3.5	
	B) Recursive function calls			
	C) Allocating CPU to resources			
	D) All of these			
	/	I		

	T			
19.	Which of the following is false about a circular linked list?	1	C21444	II
	A.) Every node has a successor		3.5	
	B.) Time complexity of inserting a new node at the head of the list			
	is O(1)			
	C.) Time complexity for deleting the last node is O(n)			
	D.) None of these			
20.	Consider an implementation of an unsorted doubly linked list.	1		II
	Suppose it has its representation with a head pointer and tail pointer.		C21444	
	Given the representation, which of the following operation can be		3.5	
	implemented in O(1) time?			
	i) Insertion at the front of the linked list	Sec. 1.		
	ii) Insertion at the end of the linked list	11		
	iii) Deletion of the front node of the linked list	1.2		
	iv) Deletion of the end node of the linked list	11	N	
	A) I and II	. Pr	N	
	B) I and III	1. 11	h\	
	C) I II and III	1.14	1. 1	
	D) I.II.III and IV	- \ .	$\cap \setminus$	
21.	Calculate time complexity required for following code:	2	~ 1	III
	for(i=0:i <n:i++)< td=""><td>- 1</td><td>C21444</td><td></td></n:i++)<>	- 1	C21444	
	for(i=0; i < n-1; i++)		3.1	
	for(k=0:k <n-2:k++)< td=""><td></td><td>-</td><td></td></n-2:k++)<>		-	
	if(a[i] < a[k])		1111	
	$n(u[j] \times u[n])$	1		
	A) O(n)	1		
	(n) O(n)	1.		
	(1) O(n2)	1	N =	
	D) $O(n+n(n-1)+n(n-1)(n-2))$	/		
22	D $O(1+1)(1-1)(1-2))What does the following function do for a given L inked L ist with the$	2	1	ш
	first node as head?	2	C21444	
	void fun1(struct node* head)	. /	3.5	
		1		
	if(head NULL)			
	return:	~		
	funl(head >next):			
	$\frac{1}{10000000000000000000000000000000000$			
	printi( %u , neau->uata),	cori:	n er Li	
	) A) Drints all nodes of linked lists	em	1911	
	A) Prints all nodes of linked list in revenue order		~	
	D) Finns all nodes of hinked list in reverse order			
	C) Prints alternate nodes of Linked List			
	D) Frints alternate nodes in reverse order			111
23.	I ne following function reverse() is supposed to reverse a singly	2	C21444	111
	inked list. There is one line missing at the end of the function.		C21444 25	
	/* Link list node */		5.5	
	struct node			





	A) Find and delete a given element in the list			
	B) Find and return the given element in the list			
	C) Find and return the position of the given element in the list			
	D) Find and insert a new element in the list			
	Unit II			
1.	Complete following steps which are required for sorting given 5	1		Ι
	numbers in ascending order:		C21444	
	for(i=0;i<5;i++)		3.2	
	for(j=0;j<4;j++)			
	E CEDICAL			
	if(), C C V V A			
		1		
	temp=a[j];	$\sim c$		
	a[j]=a[j+1];	1.10		
	a[j+1]=temp;	4	$\sim$	
	1/1/2/ 2/7000	S	10	
	Ver SLANS	$\sim c$	$ P \rangle =$	
	A) a[j]>a[j+1]	- 1.7	$\sim$	
	B) a[j] <a[j+1]< td=""><td>1</td><td>$\sim$</td><td></td></a[j+1]<>	1	$\sim$	
	C) $a[i]>a[j]$	- 1	$\frown$	
	D) a[i] > a[i+1]		2.44	
2.	Complete following steps which are required for sorting	1	C21444	1
	given 5 numbers in descending order:		C21444	
	for(1=0;1<5;1++)		5.2	
	for(j=0;j<4;j++)	1		
		1.1	~ / ·	
		1	1/-	
	tamn-afil:	/	/	
	$a_{ij} = a_{i+1}$		/	
	a[j]-a[j+1], a[i+1]-temp.		1	
	a(j+1)=comp,	- /		
	N A C	2		
	A) $a[i]>a[i+1]$	- N		
	B) $a[i] < a[i+1]$	~		
	C) $a[i] > a[i]$		100 million (100 million)	
	D) $a[i]>a[i+1]$			
3.	For 5 numbers, find out the time complexity for bubble sort	-1	101	Ι
	for worst case.		C21444	
	A) 5 🛨 🛨 🛨 🛨 🛨 🛨 🛨 🛨 🛨 🛨 🗛		3.1	
	B) 10			
	C) 20			
	D) 25			
4.	What is the worst case time for binary search finding a single item in	1		Ι
	an array?		C21444	
	A) Constant Time		3.1	

SE (Semester I)
	B) Ouadratic Time			
	C) Logarithmic Time			
	D) Linear Time			
5.	Partition and exchange sort is	1		T
	A) Tree sort	-	C21444	-
	B) Heap sort		3.4	
	C) Bubble sort			
	D) Quick Sort			
6	For merging two sorted lists of size m and n into sorted list of size	1		T
0.	$m \perp n$ we require comparisons of	1	C21444	1
	(A) O(m)		3.2	
	$(\mathbf{R}) O(\mathbf{m})$ B) $O(\mathbf{m}+\mathbf{n})$		0.2	
	$(\mathbf{D}) O(\mathbf{n} + \mathbf{n})$	2		
	D) $O(\log m + \log n)$	>		
7	is rearranging pairs of elements which are out of order until	1.1		т
7.	no such pairs remain	1	C21444	1
	A) Incontion	N 14	3.4	
	D) Euchener	$\sim 0$	5.4	
	B) Exchange	- N 1	$\sim$	
	D) Direitection	- 11	$\sim$	
	D) Distribution	_	<u></u>	т
8.	In-place merge sort is a stable sort.	1	C21444	1
	A) Irue		2 2	
	B) Faise	1	5.2	Ŧ
9.	which of the following algorithm does not divide the list	1	C21444	1
	A) Linear Search	1	2.4	
	B) Binary Search	1.4	5.4	
	C) Merge Sort	1	$\sim / -$	
10	D) Quick Sort	1		-
10.	Quick sort algorithm is an example of	1	C21444	1
	A) Greedy approach		C21444	
	B) Improved binary search	. /	3.4	
	C) Dynamic Programming	$\mathcal{A}$		
	D) Divide and conquer	<u> </u>		
11.	A sorting technique is called stable if it	_ T _	CO1444	11
	A) Takes O(nlogn) times		C21444	
	B) Uses divide-and-conquer paradigm		3.2	
	C) Maintains the relative order of occurrence of non-distinct	es e la		
	element della cone de or Eriquite	en	1.9.1	
	D) Takes O(n) space			
12.	Which of the following algorithm is not stable?	1	001444	II
	A) Bubble Sort		C21444	
	B) Quick Sort		3.2	
	C) Merge Sort			
	D) Insertion Sort			

13.	When is insertion sort a good choice of sorting an array?	II
	A) Each component of the array requires a large amount of memory	
	B) the array has only a few items out of place 3.2	
	C) Each component of the array requires a small amount of memory	
1.4	D) the processor speed is fast	
14.	A sorting machine can sort numbers in ascending order only. This	11
	machine can be used to sort all negative numbers in descending order	
	A) Sort numbers, change sign of all numbers	
	B) Add 100 to all numbers, sort, subtract 100 again from each	
	C) Subtract 100 to all numbers sort add 100 again from each	
	c) Subtract 100 to an numbers, sort, and 100 again from each	
	D) Change sign of all numbers. Sort numbers. Change sign again	
15	If the given input array is sorted or nearly sorted which of the	П
15.	following algorithm gives the best performance?	11
	A) Insertion sort	
	A) Insertion sort	
	C) Quick sort	
	D) Marga sort	
16	How many swaps are required to sort the given array using hubble 1	П
10.	sort $-\sqrt{2}$ 5 1 3 4 $\sqrt{2}$	11
	(35)	
	R) 4	
	C $C$ $C$	
	D) 7	
17	Choose the incorrect statement about merge sort from the following?	П
17.	A) both standard merge sort and in-place merge sort are stable	
	B) standard merge sort has greater time complexity than in-place	
	merge sort	
	C) standard merge sort has greater space complexity than in-place	
	merge sort	
	D) in place merge sort has O(log n) space complexity	
18	A sorting algorithm is stable if	П
	A) its time complexity is constant irrespective of the nature of input	
	B) preserves the original order of records with equal keys 3.2	
	C) its space complexity is constant irrespective of the nature of input	
	D) it sorts any volume of data in a constant time	
19.	Selection sort and Ouick sort both fall into the same category of 1	П
	sorting algorithms. What is this category?	
	A) O (n log n) sorts 3.4	
	B) Interchange Sorts	
	C) Divide and Conquer sorts	
	D) Average time is quadratic	
		1

20.	The following sorting algorithms maintain two sub-lists, one	1	C21444	II
	sorted and one to be sorted –		3.2	
	A) Selection Sort			
	B) Insertion Sort			
	C) Merge Sort			
	D) Both A & B			
21.	Complete following given passes required for merge sort.	2		III
	pass #1- 55 11 77 22 99 66	-	C21444	
	pass #2-		3.5	
	pass #3-			
	pass #4- 11 22 55 66 77 99	Sec. 1.		
	A) pass #2- 55 11 22 66 77 99	1		
	pass #3- 11 22 66 55 77 99	121		
	B) pass #2- 11 55 22 77 66 99	N	N	
	pass #3- 11 22 55 77 66 99			
	C) pass #2- 11 55 22 77 66 99	> e!	$\gamma \sim -$	
	pass #3- 11 55 22 77 66 99	1.24	1	
	D) pass #2- 11 55 22 77 66 99	1		
	pass #3- 11 22 55 66 77 99	1	1 _	
22.	Which of the following is not a limitation of binary search	2	01	III
	algorithm?		C21444	
	A) must use a sorted array		3.2	
	B) requirement of sorted array is expensive when a lot of			
	insertion and deletions are needed	- /		
	C) there must be a mechanism to access middle element directly	1.		
	D) binary search algorithm is not efficient when the data	1	$\nabla / \cdot$	
-	elements more than 1500.	/	-/	
23.	Assume that the algorithms considered here sort the input sequences	2		III
	in ascending order. If the input is already in ascending		C21444	
	order, which of the following are TRUE?	. 1	3.5	
	1. Quicksort runs in $\Theta(n^2)$ time	A.		
	II. Bubble sort runs in $\Theta(n^2)$ time	$\sim$		
	III. Mergesort runs in $\Theta(n)$ time	~ ~		
	IV. Insertion sort runs in $\Theta(n)$ time			
	A) I and II only			
	B) I and III only	eserie.		
	C) If and IV only	en	191	
24	D) I and IV only	2		TTT
24.	suppose we have a $O(n)$ time algorithm that finds median of an	2	C21444	111
	first find modion using the above algorithm, then use modion as nivet		3 5	
	What will be the worst asso time complexity of this modified		5.5	
	QuickSort			
	$A = O(n^{2} \log n)$			
	$\begin{array}{c} A \\ O(n \ 2 \ \log n) \\ B \\ O(n \ 2) \end{array}$			
1				

D) Onlog m)       III         25.       You have to sort 1 GB of data with only 100 MB of available main memory. Which sorting technique will be most appropriate?       III         A) Heap Sort       B) Merge Sort       III         B) Merge Sort       Insertion Sort       III         D) Quick Sort       IIII       III         1.       Stack is used for       I       C21444         B) Breadth First Traversal       I       C21444         C) Recursion       D) None of the above       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		C) O(n logn logn)			
25.       You have to sort 1 GB of data with only 100 MB of available main memory. Which sorting technique will be most appropriate?       2       C21444       3.5         A) Heap Sort       B) Merge Sort       1       C21444       3.5         B) Merge Sort       C) Insertion Sort       1       C21444       3.5         D) Quick Sort       1       C21444       3.5         B) Breadth First Traversal       1       C21444       1         C) Recursion       1       C21444       3.5         D) None of the above       2       Postfix expression is just a reverse of prefix expression.       1       C21444         B) Fradth First Traversal       1       C21444       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444       3.3         3.       What about recursion is true in comparison with iteration too.       1       C21444       3.1         B) low performance.       1       C21444       3.1       1         C) every recursive program can be written with iteration too.       1       C21444       3.3         A) Ueue       B) Stack       1       C21444       3.3         C) Tree       D) Linked list       1       C21444       3.3 <t< td=""><td></td><td>D) $O(n \log n)$</td><td></td><td></td><td></td></t<>		D) $O(n \log n)$			
memory. Which sorting technique will be most appropriate?       C21444         A) Heap Sort       Stack         C) Insertion Sort       D) Quick Sort         I.       Stack is used for         A) CPU Resource Allocation       1         B) Breadth First Traversal       C21444         C) Recursion       1         D) None of the above       1         C.       Postfix expression is just a reverse of prefix expression.         A) True       B) False         B) Brake       1         C1444       3.1         A) very expensive in terms of memory.       1         B) low performance.       1         C) every recursive program can be written with iteration too.       1         D) all of the above are true!       1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a?       3,3         A) Queue       1       C21444       3,3         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444         A) BDC       1       C21444       3,5       1         6.       A normal queue, if implemented using an array of size MAX_SIZ	25.	You have to sort 1 GB of data with only 100 MB of available main	2		III
A) Heap Sort       3.5         B) Merge Sort       3.5         C) Insertion Sort       D) Quick Sort         Unit III         1.       Stack is used for         A) CPU Resource Allocation       1         B) Breadth First Traversal       2         C) Recursion       0         D) None of the above       1         2.       Postfix expression is just a reverse of prefix expression.         A) True       3.3         B) Breadth First Traversal       3.3         3.       What about recursion is true in comparison with iteration?       1         A) very expensive in terms of memory.       1         B) low performance.       2         C) every recursive program can be written with iteration roo.       1         D) all of the above are true!       4         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a?       3.3         A) Queue       B) Stack       2         D) Linked list       1       C21444         5.       If the clements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444         A) ABDC       B) DCBA		memory. Which sorting technique will be most appropriate?		C21444	
B) Merge Sort       C) Insertion Sort         D) Quick Sort       Unit III         1.       Stack is used for       1       C21444         A) CPU Resource Allocation       1       C21444       3.5         B) Breadth First Traversal       0       2.       Postfix expression is just a reverse of prefix expression.       1       C21444       1         A) True       3.3       What about recursion is true in comparison with iteration?       1       C21444       1         A) very expensive in terms of memory.       1       C21444       3.3         B) low performance.       1       C21444       3.1         C) every recursive program can be written with iteration too.       1       C21444       3.1         D) all of the above are true!       1       C21444       3.3       1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444       3.3         5.       If the clements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5         B) DCBA       0       2.5       CDAB       2.5       1       C21444       3.5         B) DCBA </td <td></td> <td>A) Heap Sort</td> <td></td> <td>3.5</td> <td></td>		A) Heap Sort		3.5	
C) Insertion Sort       D) Quick Sort         Unit III         1.       Stack is used for       1       C21444         B) Breadth First Taversal       3.5       1         C) Recursion       1       C21444       3.5         D) None of the above       1       C21444       3.5         2.       Postfix expression is just a reverse of prefix expression.       1       C21444       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444       3.3         3.       What about recursion is true in comparison with iteration too.       1       C21444       3.1         B) False       1       C21444       3.1       1         A) very expensive in terms of memory.       1       C21444       3.1         B) low performance.       2       C every recursive program can be written with iteration too.       1       C21444       3.1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       3.3       4       A         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5 <td< td=""><td></td><td>B) Merge Sort</td><td></td><td></td><td></td></td<>		B) Merge Sort			
D) Quick Sort       Unit III         1.       Stack is used for       1       C21444       1         A) CPU Resource Allocation       B) Breadth First Traversal       1       C21444       3.5         C) Recursion       D) None of the above       1       C21444       3.5         A) True       A) True       1       C21444       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444       3.3         3.       What about recursion is true in comparison with iteration too.       1       C21444       3.1         B) low performance.       C) every recursive program can be written with iteration too.       1       C21444       3.1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444       3.3         A) Queue       B) Stack       C) Tree       1       C21444       3.5         D) Linked list       1       C21444       3.5       1         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5         A) ABDC       3.5       1       C21444       3.5		C) Insertion Sort			
Unit III         1.       Stack is used for       1       C21444       I         A) CPU Resource Allocation       1       C21444       3.5         B) Breadth First Traversal       3.5       1       C21444         B) For the above       1       C21444       3.5         2.       Postfix expression is just a reverse of prefix expression.       1       C21444       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444       3.1         3.       What about recursion is true in comparison with iteration too.       1       C21444       3.1         B) low performance.       C       every recursive program can be written with iteration too.       1       C21444       3.1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444       3.3         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5         6.       A normal queue, if implemented using an array of size MAX_SIZE, 1       C21444       3.3       1         9.) ABCD       0.       AL       III       III       I		D) Quick Sort			
1.       Stack is used for       I       I       I       I         A) CPU Resource Allocation       B) Breadth First Traversal       3.5       I         C) Recursion       D) None of the above       I       C21444       3.5         2.       Postfix expression is just a reverse of prefix expression.       I       C21444       I         B) False       3.3       I       C21444       I         3.       What about recursion is true in comparison with iteration?       I       C21444       I         A) very expensive in terms of memory.       I       C21444       I       I         B) low performance.       I       C21444       I       I         C) every recursive program can be written with iteration too.       D) all of the above are true!       I       C21444       I         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       I       C21444       I         A) Queue       B) Stack       I       C21444       I       I         C) Tree       D       Linked list       I       C21444       I       I         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what o		Unit III			
A) CPU Resource Allocation       C21444         B) Breadth First Traversal       3.5         C) Recursion       D) None of the above         2.       Postfix expression is just a reverse of prefix expression.       1       C21444         B) False       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444         B) False       3.3       1       C21444         B) overy expensive in terms of memory.       1       C21444         B) low performance.       2       C21444         C) every recursive program can be written with iteration too.       1       C21444         D) all of the above are true!       1       C21444         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1         A) Queue       1       C21444       3.3         B) Stack       7       1       C21444         C) Tree       1       C21444       3.5         D) Linked list       1       C21444       3.5         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444         A) ABDC	1.	Stack is used for	1		Ι
B) Breadth First Traversal       3.5         C) Recursion       D) None of the above         2.       Postfix expression is just a reverse of prefix expression.         A) True       I         B) False       1         3.       What about recursion is true in comparison with iteration?         A) very expensive in terms of memory.       1         B) low performance.       1         C) every recursive program can be written with iteration too.       1         D) all of the above are true!       1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1         A) Queue       B) Stack       2         D) Linked list       1       C21444         3.5       1       C21444         3.1       1       C21444         3.1       1       C21444         3.1       1       C21444         3.3       1       1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1         A) Queue       B) Stack       1       C21444         5.       If the elements "A", "B", "C" and "D" are		A) CPU Resource Allocation		C21444	
C) Recursion       D) None of the above         2.       Postfix expression is just a reverse of prefix expression.       1       C21444         A) True       C21444       3,3         B) False       1       C21444         B) False       1       C21444         B) False       1       C21444         B) False       1       C21444         B) ov performance.       1       C21444         C) every recursive program can be written with iteration too.       D) all of the above are true!       1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444         A) Queue       B) Stack       1       C21444       1         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5         B) DEBA       D DCAB       1       C21444       3.5       1         6.       A normal queue, if implemented using an array of size MAX_SIZE, gets full when       1       C21444       3.3         A) Rear = MAX_SIZE - 1       3.3       1       1       C21444         B) Front = (rear + 1)mod MAX_SIZE       1		B) Breadth First Traversal	~	3.5	
D) None of the above       1       C21444         A) True       C21444       3.3         B) False       3.3       I         C21444       3.3       I         C21444       3.3       I         C21444       3.3       I         C21444       3.3       I         A) very expensive in terms of memory.       1       C21444         B) low performance.       2.       1         C) every recursive program can be written with iteration too.       2.       1         D) all of the above are true!       1       C21444       3.1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444         A) Queue       3.3       1       1       C21444         B) Stack       C) Tree       1       C21444       3.3         D) Linked list       1       1       C21444       3.5         B) BCBA       2       2       3.5       1         CDCAB       1       1       C21444       3.5         D) ABCD       3       1       1       C21444       3.5         C) DCCAB       1 <td></td> <td>C) Recursion</td> <td>$\sim c$</td> <td></td> <td></td>		C) Recursion	$\sim c$		
2.       Postfix expression is just a reverse of prefix expression.       1       C21444       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444       3.1         A) very expensive in terms of memory.       B) low performance.       1       C21444       3.1         C) every recursive program can be written with iteration too.       D) all of the above are true!       1       C21444       3.3         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444       3.3         A) Queue       B) Stack       C) Tree       1       C21444       3.3         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5         B) DCBA       0       2       5       1       C21444       3.5       1         6.       A normal queue, if implemented using an array of size MAX_SIZE, gets full when       1       C21444       3.3         9. ABCD       6.       A normal queue, if implemented using an array of size MAX_SIZE, gets full when       1		D) None of the above	100		
A) True       C21444         B) False       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444         A) very expensive in terms of memory.       1       C21444       3.1         B) low performance.       2       1       C21444       3.1         C) every recursive program can be written with iteration too.       D) all of the above are true!       1       C21444       3.1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444       3.3         A) Queue       B) Stack       2       3.3       1       1         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5         B) DCBA       2.0       C       C21444       3.5       1         6.       A normal queue, if implemented using an array of size MAX_SIZE, 1       1       C21444       3.3         B) DCBA       1       C21444       3.5       1       1         6.       A normal queue, if implemented using an array of size MAX_SIZE, 1       1       C21444       3.3         B) Front = (rear + 1)mod	2.	Postfix expression is just a reverse of prefix expression.	1	~	Ι
B) False       3.3         3.       What about recursion is true in comparison with iteration?       1       C21444         A) very expensive in terms of memory.       1       C21444       3.1         B) low performance.       C) every recursive program can be written with iteration too.       1       C21444       3.1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444       3.3         A) Queue       B) Stack       C) Tree       1       C21444       3.3         D) Linked list       1       C21444       3.3       1         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444       3.5         B) DCBA       C) DCAB       1       C21444       3.5       1         6.       A normal queue, if implemented using an array of size MAX_SIZE, gets full when       1       C21444       3.3         A) Rear = MAX_SIZE - 1       B) Front = (rear + 1) mod MAX_SIZE       1       C21444       3.3		A) True	N	C21444	
3.       What about recursion is true in comparison with iteration?       1       C21444       I         A) very expensive in terms of memory.       B) low performance.       1       C21444       3.1         C) every recursive program can be written with iteration too.       D) all of the above are true!       1       C21444       3.1         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1       C21444       3.3         A) Queue       B) Stack       1       C21444       3.3         C) Tree       D) Linked list       1       C21444       3.3         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444         A) ABDC       1       C21444       3.5         B) DCBA       1       C21444       3.5         C) DCAB       D) ABCD       1       C21444       3.5         6.       A normal queue, if implemented using an array of size MAX_SIZE, qets full when       1       C21444       3.3         A) Rear = MAX_SIZE - 1       B) Front = (rear + 1) mod MAX_SIZE       3.3       1       1		B) False	$\mathbb{N}^{\mathbb{C}}$	3.3	
A) very expensive in terms of memory. B) low performance. C) every recursive program can be written with iteration too. D) all of the above are true!C21444 3.14.A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ? A) Queue B) Stack C) Tree D) Linked list1C21444 3.35.If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed? A) ABDC B) DCBA C) DCAB D) ABCD1C21444 3.56.A normal queue, if implemented using an array of size MAX_SIZE, C) Front = rear + 11C21444 3.3	3.	What about recursion is true in comparison with iteration?	1	2	Ι
B) low performance.       3.1         C) every recursive program can be written with iteration too.       D) all of the above are true!         4.       A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?       1         A) Queue       B) Stack       C) Tree         D) Linked list       1       C21444         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?       1       C21444         A) ABDC       3.5       1       C21444         B) DCBA       C) DCAB       1       C21444         A) Rear = MAX_SIZE - 1       I       C21444       3.3         B) Front = (rear + 1)mod MAX_SIZE       1       C21444       3.3		A) very expensive in terms of memory.	1	C21444	
C) every recursive program can be written with iteration too. D) all of the above are true!I4.A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ? A) Queue B) Stack C) Tree D) Linked listI5.If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed? B) DCBA C) DCAB D) ABCDI6.A normal queue, if implemented using an array of size MAX_SIZE, C) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1I		B) low performance.	- N	3.1	
D) all of the above are true!4.A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ? A) Queue B) Stack C) Tree D) Linked list1C21444 3.3I5.If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed? B) DCBA C) DCAB D) ABCD1C21444 3.5I6.A normal queue, if implemented using an array of size MAX_SIZE, C) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1II		C) every recursive program can be written with iteration too.	1	0.11	
<ul> <li>4. A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ? <ul> <li>A) Queue</li> <li>B) Stack</li> <li>C) Tree</li> <li>D) Linked list</li> </ul> </li> <li>5. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?</li> <li>A) ABDC</li> <li>B) DCBA</li> <li>C) DCAB</li> <li>D) ABCD</li> </ul> <li>6. A normal queue, if implemented using an array of size MAX_SIZE, gets full when <ul> <li>A) Rear = MAX_SIZE - 1</li> <li>B) Front = (rear + 1) mod MAX_SIZE</li> <li>C) Front = rear + 1</li> </ul> </li>		D) all of the above are true!			
<ul> <li>(front) and insertion can take place only at the other end (rear) is known as a ?</li> <li>A) Queue</li> <li>B) Stack</li> <li>C) Tree</li> <li>D) Linked list</li> <li>5. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?</li> <li>A) ABDC</li> <li>B) DCBA</li> <li>C) DCAB</li> <li>D) ABCD</li> <li>6. A normal queue, if implemented using an array of size MAX_SIZE, qets full when</li> <li>A) Rear = MAX_SIZE - 1</li> <li>B) Front = (rear + 1)mod MAX_SIZE</li> <li>C) Front = rear + 1</li> </ul>	4.	A linear list of elements in which deletion can be done from one end	1		Ι
known as a ? A) Queue B) Stack C) Tree D) Linked list3.35.If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed? A) ABDC B) DCBA C) DCAB D) ABCD16.A normal queue, if implemented using an array of size MAX_SIZE, qets full when A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1I		(front) and insertion can take place only at the other end (rear) is	1	C21444	
A) Queue         B) Stack         C) Tree         D) Linked list         5.       If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?         A) ABDC       I         B) DCBA       3.5         C) DCAB       D) ABCD         6.       A normal queue, if implemented using an array of size MAX_SIZE, qets full when         A) Rear = MAX_SIZE - 1       I         B) Front = (rear + 1)mod MAX_SIZE       3.3		known as a ?	1	3.3	
B) Stack C) Tree D) Linked listI5.If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed? A) ABDC B) DCBA C) DCAB D) ABCDI6.A normal queue, if implemented using an array of size MAX_SIZE, gets full when A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1I		A) Queue	1.	1	
C) Tree D) Linked listI5.If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?1C21444A) ABDC B) DCBA C) DCAB D) ABCD3.53.53.56.A normal queue, if implemented using an array of size MAX_SIZE, gets full when A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1IC21444		B) Stack	1	$\overline{}$	
D) Linked listIf the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?1C21444A) ABDC3.53.53.5B) DCBA3.53.53.5C) DCABD) ABCD1C21444A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1I3.3		C) Tree	1	1	
<ul> <li>5. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?</li> <li>A) ABDC</li> <li>B) DCBA</li> <li>C) DCAB</li> <li>D) ABCD</li> <li>6. A normal queue, if implemented using an array of size MAX_SIZE, 1</li> <li>Gets full when</li> <li>A) Rear = MAX_SIZE - 1</li> <li>B) Front = (rear + 1)mod MAX_SIZE</li> <li>C) Front = rear + 1</li> </ul>		D) Linked list		1	
deleted one at a time, in what order will they be removed?       C21444         A) ABDC       3.5         B) DCBA       3.5         C) DCAB       D) ABCD         6.       A normal queue, if implemented using an array of size MAX_SIZE, qets full when       1         A) Rear = MAX_SIZE - 1       3.3         B) Front = (rear + 1)mod MAX_SIZE       3.3	5.	If the elements "A", "B", "C" and "D" are placed in a queue and are	1	/	Ι
<ul> <li>A) ABDC</li> <li>B) DCBA</li> <li>C) DCAB</li> <li>D) ABCD</li> <li>6. A normal queue, if implemented using an array of size MAX_SIZE, 1</li> <li>Gets full when</li> <li>A) Rear = MAX_SIZE - 1</li> <li>B) Front = (rear + 1)mod MAX_SIZE</li> <li>C) Front = rear + 1</li> </ul>		deleted one at a time, in what order will they be removed?	. /	C21444	
B) DCBA C) DCAB D) ABCD 6. A normal queue, if implemented using an array of size MAX_SIZE, 1 I gets full when A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1		A) ABDC	. A.	3.5	
C) DCAB D) ABCDI6.A normal queue, if implemented using an array of size MAX_SIZE, gets full when A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1I		B) DCBA	1		
D) ABCDI6.A normal queue, if implemented using an array of size MAX_SIZE, gets full when A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1I		C) DCAB	~ ~		
<ul> <li>A normal queue, if implemented using an array of size MAX_SIZE,</li> <li>gets full when</li> <li>A) Rear = MAX_SIZE - 1</li> <li>B) Front = (rear + 1)mod MAX_SIZE</li> <li>C) Front = rear + 1</li> </ul>		D) ABCD			
gets full when A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1	6.	A normal queue, if implemented using an array of size MAX_SIZE,	1	-	Ι
A) Rear = MAX_SIZE - 1 B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1		gets full when	es e in	C21444	
B) Front = (rear + 1)mod MAX_SIZE C) Front = rear + 1		A) Rear = MAX_SIZE $-1$	enn	3.3	
C) Front = rear $+ 1$		B) Front = $(rear + 1)mod MAX_SIZE$		~	
		C) Front = rear $+ 1$			
D) Rear = front		D) Rear = front			
7. In a Queue, if a user tries to remove an element from empty Queue it 1 I	7.	In a Queue, if a user tries to remove an element from empty Queue it	1		Ι
is called C21444		is called		C21444	
A) Underflow 3.3		A) Underflow		3.3	
B) Empty collection		B) Empty collection			
C) Overflow		C) Overflow			

1		r		
	D) Garbage Collection			
8.	The data structure required to check whether an expression contains	1		Ι
	balanced parenthesis is?		C21444	
	A) Stack		3.5	
	B) Queue			
	C) Array			
	D) Tree			
9.	In Breadth First Search of Graph, which of the following data	1		Ι
	structure is used?		C21444	
	A) Stack		3.5	
	B) Queue			
	C) Linked list	1. Contraction 1. Con		
	D) None of the mentioned	$\sim 1$		
10.	A data structure in which elements can be inserted or deleted at/from	1		Ι
	both the ends but not in the middle is?	a	C21444	
	A) Queue		3.3	
	B) Circular queue	1.11	n \	
	C) Dequeue	1.2	1.1	
	D) Priority queue	1.1	$\cap$	
11.	Let the following circular queue can accommodate maximum six	1		Π
	elements with the following data. What will happen after ADD O	1	C21444	
	operation takes place?		3.5	
	front = $2 \text{ rear} = 4$		Property lies	
	$a_{\text{mene}} = \frac{1}{2} I M N$		1111	
	A) front $-2$ rear $-5$	1	11	
	$\frac{1}{1000} = \frac{1}{1000} = 1$	1		
	B)  front = 3  rear = 5	1.	er ( -	
	$\frac{1}{2} \frac{1}{2} \frac{1}$	1	1	
	C)  front = 3  rear = 4	/	1	
	C = C = C = C = C = C = C = C = C = C =		1	
	$queue = _, L, M, N, O, _$		1	
	D = I = M = I	. /		
12	A priority guous can afficiently be implemented using which of the	1		п
12.	A phoney queue can enclenely be implemented using which of the following data attractures? A saume that the number of insert and neal	м н.,	C21444	11
	(operation to see the summer highest priority item) and sufficient	~ ``\	$\frac{1}{35}$	
	(operation to see the current highest phoney here) and extraction		5.5	
	(remove the highest priority item) operations are almost same			
	A) Allay D) Linked List	corio	ha Li	
	D) Lilikeu List C) Hoop Date Structures like Dinery Hoop, Eihoppesi Hoor	enn	191	
	D) None of the choice			
1.2	D) None of the above	1		т
13.	If the WIAX_SIZE is the size of the array used in the implementation	1	C21444	11
	of a circular queue. How is rear manipulated while inserting an		25	
	element in the queue?		5.5	
	A) rear=(rear%1)+MAX_SIZE			
	$ B) rear = rear % (MAX_SIZE+1) $			
	C) rear=(rear+1)%MAX_SIZE			

	D) rear= rear + $(1\% MAX_SIZE)$			
14.	How many stacks are needed to implement a queue. Consider the situation where no other data structure like arrays, linked list is available to you. A) 1 B) 2 C) 3	1	C21444 3.5	II
15.	D) 4 What is the time complexity of deleting from the rear end of the	1		II
	<ul> <li>dequeue implemented with a singly linked list?</li> <li>A) O(n log n)</li> <li>B) O(log n)</li> <li>C) O(n)</li> <li>D) O(n^2)</li> </ul>	>	C21444 3.1	
16.	The postfix form of the expression (A+ B)*(C*D- E)*F / G is? A) AB+ CD*E - FG /** B) AB + CD* E - F **G / C) AB + CD* E - *F *G / D) AB + CDE * - *F *G /	200	C21444 3.5	Π
17.	<ul> <li>When an operand is read, which of the following is done?</li> <li>A) It is placed on to the output</li> <li>B) It is placed in operator stack</li> <li>C) It is ignored</li> <li>D) Operator stack is emptied</li> </ul>	1	C21444 3.5	Π
18.	It is easier for a computer to process a postfix expression than an infix expression. A) True B) False	1.	C21444 3.5	II
19.	What is the result of the following operation Top (Push (S, X)) A) S B) Null C) X D) None	X	C21444 3.5	Π
20.	The prefix form of an infix expression p + q - r * t is? A) + pq - *rt B) - +pqr * t C) - +pq * rt D) - + * pqrt	eri	C21444 3.5	II
21.	After performing these set of operations, what does the final list look contain? InsertFront(10); InsertFront(20); InsertRear(30); DeleteFront();	2	C21444 3.5	III

	Insort Door(10).	
	InsertRear(10):	
	DeleteRear():	
	InsertRear(15):	
	display();	
	A) 10 30 10 15	
	B) 20 30 40 15	
	C) 20 30 40 10	
	D) 10 30 40 15	
22.	The result of evaluating the postfix expression2	III
	5, 4, 6, +, *, 4, 9, 3, /, +, * is?	
	A) 450 3.5	
	B) 350	
	C) 650	
	D) 288	
23.	Consider the following operation performed on a stack of size 5. $2$	111
	Push(1); $D_{ar}(x) = \frac{1}{2} \frac{1}{2}$	
	Pop(); Push(2):	
	Push(2); $Push(3):$	
	Push(5), Pop():	
	Push(A)	
	Pon().	
	Pop():	
	Push(5):	
	After the completion of all operation, the no of element present on	
	stack are	
	A) 1	
	B) 2	
	C) 3	
	D) 4	
24.	Assume that the operators $+,-, X$ are left associative and $\wedge \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	III
	Lic right according. The order of precedence (from highest	
	is right associative. The order of precedence (from highest 3.5	
	to lowest) is $\wedge$ , X, +, The postfix expression corresponding	
	to the infix expression $a + b X c - d \wedge e \wedge f$ is	
	A) abc X+ def $\land$ -	
	B) abc X+ de∧f∧ -	
	C) ab+c Xd – e $\wedge f \wedge$	
	D) -+aXbc^ ^def	
25.	Consider the usual implementation of parentheses balancing program 2	III
	using stack. What is the maximum number of parentheses that will	
	appear on stack at any instance of time during the analysis of 3.5	

Page - 99 -

(()(())(()))?		
A) 1		
B) 2		
C) 3		
D) 4		

See.

Unit IV	
Unit IV	
The in-order traversal of tree will yield a sorted listing of elements of tree in1C214443.5A. Binary trees D. Dinery second treesC214443.5C214443.5	IV
D. Full binary Tree ANSWER : B	
In a binary tree, certain null entries are replaced by special pointers which point to nodes higher in the tree for efficiency. These special pointers are called A. Leaf B. Branch C. Path D. Thread ANSWER : D	IV
If node N is a terminal node in a binary tree then its1A. Right tree is emptyCB. Left tree is emptyCC. Both left & right sub trees are emptyCD. Root node is emptyCANSWER : CC	IV
In-order traversing a tree resulted in E A C K F H D B G; the pre- order traversal would return. A. FAEKCDBHG B. FAEKCDHGB C. EAFKHDCBG D. FEAKDCHBG ANSWER : B	IV

Pre-order Traversal of Following Binary Tree is:	1		IV
		C214443.5	
$\sim$ $\sim$			
(2) (3)			
	·		
	7		
	e		
(4) (5) (6)			
	£ 14		
	2	N	
8) (9)	U,	N	
	< 17		
A. 894526731	$\sim$	~	
B. 8 4 9 2 5 1 6 3 7	$\sim$	(P)	
C. 1 2 4 8 9 5 3 6 7		(m)	
D. 1 2 5 4 8 9 3 6 7		101	
ANSWER : C	1	101	13.7
A binary tree 1 has n leaf nodes. The number of nodes of degree 2 in	1	C214443.5	IV
1  Is		C214445.5	
$\begin{array}{c} A. 10g2 \Pi \\ B. n 1 \end{array}$		1	
D. 11-1 C n		1 - 11	
$D_{2n}$		1-11	
ANSWER : B		$/\sim 1$	
A binary search tree is generated by inserting in order the following	1/	- /	IV
integers:		C214443.5	
50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24	/	/	
The number of nodes in the left subtree and right subtree of the root			
respectively is	大.	6	
A. 4, 7	1	1	
B. 7, 4	~	\	
C. 8, 3			
ANSWER: B		rimer	13.7
I he maximum number of binary trees that can be formed with three unlabeled nodes is:	ee.	C214443 5	1 V
		0217773.3	
B 3			
C.4			
D. 5			
ANSWER : D			
The inorder and preorder traversal of a binary tree are <i>d</i> b e a f c g and	2		IV
<i>a b d e c f g</i> , respectively. The postorder traversal of the binary tree is:		C214443.5	



D. complexity in implementing			
	1		<b>TX</b> 7
which of the following is the most widely used external memory data	1	C214443 5	IV
structure?		C214445.5	
A. AVL Tree			
B. B-1ree			
C. Red Black Tree	1. Contraction 1. Con		
D. Both AVL and Red Black Tree	2		
ANSWER : B	V		
What is the worst case time complexity for search, insert and delete	{ 1	00144421	IV
operations in general binary search tree?	<u></u>	C214443.1	
A. O(n) for all	12		
B. O(log n) for all	$\sim$	N	
C. O(Logn) for search and insert, and O(n) for delete	, <i>S</i>	1	
D. O(Logn) for search, and O(n) for insert and delete	$\mathbb{N}^{n}$	2	
ANSWER : A	1.	~	
In delete operation of BST, we need inorder successor (or	$  1 \rangle$	(PA)	IV
predecessor) of a node when the node to be deleted has both left and	1	C214443.5	
right child as non-empty. Which of the following is true about inorder		$\langle O \rangle$	
successor needed in delete operation?		1-1	
A. inorder Successor is always a leaf node		1021	
B. Inorder successor is always either a leaf node or a node with empty	-		
left child		1 mm	
C. Inorder successor may be an ancestor of the node		1	
D. Inorder successor is always either a leaf node or a node with empty		1-1	
right child		1 1	
ANSWER : B		$  \sim  $	
Which of the following traversal outputs the data in sorted order in a	1	1	IV
BST?		C214443.5	
A. Preorder	1	/	
B. Inorder	1	/	
C. Postorder	the second	1	
D. Level Order	11/	7	
ANSWER : B	1	\	
A binary search tree contains the value 1, 2, 3, 4, 5, 6, 7, 8. The tree	2	<u></u>	IV
is traversed in pre-order and the values are printed out. Which of the		C214443.5	± ,
following sequences is a valid output?			
A 53124786	10.0	rina I	
B 53126487	000		
C 53241678			
D 53124768			
ANSWER · D			
The number of edges from the root to the node is called	1		IV
of the tree		C214443 5	1 V
A Height		C21777J.J	
A. Height			
D. Depui			

C. Length			
D. Width			
ANSWER : B			
What is a full binary tree?	1		IV
A. Each node has exactly zero or two children		C214443.5	
B. Each node has exactly two children			
C. All the leaves are at the same level			
D. Each node has exactly one or two children	Sec. 1		
ANSWER : A	1		
Which of the following is not an advantage of trees?	1		IV
A. Hierarchical structure	1. A.	C214443.5	
B. Faster search	1		
C. Router algorithms	$\sim$	N	
D. Undo/Redo operations in a notepad	U.	A 44	
ANSWER : D	$\sim 2$	L- N -	
The operation of processing each element in the list is known as	1	· · · ·	IV
A. sorting	$\sim$	C214443.5	
B. merging		1 1	
C. inserting		$\langle O \rangle$	
D. traversal		$1 \leq 1$	
ANSWER : D		101	
A terminal node in a binary tree is called	1		IV
A. Root		C214443.5	
B. Leaf		1111	
C. Child		1-1	
D. Branch		1 11	
ANSWER : B		$\sim 1$	
What does the following piece of code do?	1/	1	IV
public void func(Tree root)	1	C214443.5	
Ĩ	1		
<pre>func(root.left());</pre>			
<pre>func(root.right());</pre>	*	6	
cout< <root.data();< td=""><td>1</td><td>1</td><td></td></root.data();<>	1	1	
}	1	N	
A. Preorder traversal		1 miles	
B. Inorder traversal		No. of Concession, Name	
C. Postorder traversal		-	
D. Level order traversal	10.0	rina I	
ANSWER : C	- 100 Nor		
What are the disadvantages of normal binary tree traversals?	1		IV
A. there are many pointers which are null and thus useless		C214443.5	
B. there is no traversal which is efficient			
C. complexity in implementing			
D. improper traversals			
ANSWER : A			

			SE (Semeste	er I)
	Which of the following tree traversals work if the null left pointer	1	CO14440 5	IV
	pointing to the predecessor and null right pointer pointing to the		C214443.5	
	successor in a binary tree?			
	A. inorder, postorder, preorder traversals			
	B.inorder			
	C. postorder			
	D. preorder ANSWER · A	·		
	Unit V	7		
1.	A minimal spanning tree of a graph G is	1	C	V
	A A spanning subgraph	1	C214443.5	
	B A tree			
	C Minimum weights	$\cap$	N	
	D All of above	$\sim$ $^{\prime}$	$\sim$	
	ANSWER : D	$\sim 1$		
2.	How many distinct spanning trees do exist in an undirected cycle	1	101	V
	graph of n vertices?		C214443.5	
	A. n		101	
	B.n+1		151	
	C. n-1		101	
	D. n+2			
	ANSWER : A		- mail	
3.	What is an AVL tree?	1		V
	A. a tree which is balanced and is a height balanced tree		C214443.5	
	B. a tree which is unbalanced and is a height balanced tree		1	
	C. a tree with three children		$\langle -\nabla \rangle$	
	D. a tree with atmost 3 children	1	. /	
4	ANSWER : A	1		<b>X</b> 7
4.	In the traversal we process all of a vertex's descendants	e 1 -	C214443 5	V
	A Dopth First	all as	C21+++5.5	
	A. Depui Fiist B. Breadth Eirst	75.7	( )	
	C With First	1	1	
	D Depth Limited		N	
	ANSWER : A			
5.	Consider a max heap, represented by the array: 40, 30, 20, 10, 15, 16,	1		V
	17, 8, 4. Now consider that a value 35 is inserted into this heap. After	0.0	C214443.5	
	insertion, the new heap is	10.10		
	A. 40, 30, 20, 10, 15, 16, 17, 8, 4, 35			
	B. 40, 35, 20, 10, 30, 16, 17, 8, 4, 15			
	C. 40, 30, 20, 10, 35, 16, 17, 8, 4, 15			
	D. 40, 35, 20, 10, 15, 16, 17, 8, 4, 30			
	ANSWER : B			
6.	An adjacency matrix representation of a graph cannot contain	1		V
	information of :		C214443.5	

	A. nodes			
	B. edges			
	C. direction of edges			
	D. parallel edges			
	ANSWER : D			
7.	What is the maximum height of any AVL-tree with	th 7 nodes? Assume 1		V
	that the height of a tree with a single node is $0.7$	TT COM	C214443.5	
	A. 2	1 40 . N		
	B. 3	///		
	C.4			
	D. 5	UCASE		
	ANSWER : B			
8.	Which of the following is AVL Tree?		<	V
		<u> </u>	C214443.5	
	A			
	100		1 N	
	/		101	
	50 200	42 1	1.0	
			VOV.	
	/	1 2	101	
	10 300		101	
		La San Z	1 1 1	
	P	202	1.00	
	D	22102		
	100		1-11	
	/	621	I may in 1	
	50 200		~ / /	
	1 1	76 /	/	
	10 150 300			
	1	- L.	/	
	5	- K.	e (	
		- 5 /	1	
		/	×	
			100 million (100 million)	
	C			
	100	Enginee	a line and	
	1	Enginee	nng i	
	50 200		~	
	50 200	5 *		
	1 /			
	10 60 150 300			
	1			
	5 180 400			
	A. ONLY A			

	B. A and C			
	C. A, B and C			
	D. ONLY B			
	ANSWER : B			
9.	Suppose we run Dijkstra's single source shortest-path algorithm on	2		V
	the following edge weighted directed graph with vertex P as the		C214443.4	
	source. In what order do the nodes get included into the set of vertices			
	for which the shortest path distances are finalised?	100		
		1		
	$(\mathbf{Q}) \longrightarrow (\mathbf{R})$	(		
		1. A.		
		1		
		$\sim$	N	
		U.	× .	
	The the	1	2	
		$\sim 1$	r . N	
	APORSTU	- N	105	
	B P O R U S T		1-21	
	C P O R U T S		$\langle O \rangle$	
			$1 \leq 1$	
	ANSWER B		101	
10.	Which of the following is an advantage of adjacency list	1		V
	representation over adjacency matrix representation of a graph?	_	C214443.5	
	A. In adjacency list representation, space is saved for sparse graphs.		1	
	B. DFS and BSF can be done in $O(V + E)$ time for adjacency list		1-11	
	representation. These operations take $O(V^2)$ time in adjacency		1 1	
	matrix representation. Here is V and E are number of vertices and		$\langle -\tau \rangle$	
	edges respectively.		~/	
	C. Adding a vertex in adjacency list representation is easier than			
	adjacency matrix representation	1		
	D. All of the above		/	
	ANSWER : D	大.	×	
11.	Which of the following statements is/are TRUE for an undirected	1	1	V
	graph?		C214443.5	
	P: Number of odd degree vertices is even		1	
	Q: Sum of degrees of all vertices is even			
	A. PONLY		nine er	
	B. Q ONLY JUEITI CUIEUE OT ENGI	166	ring i	
	C. Both P and Q		0	
	D. Neither P nor Q			
	ANSWER : C			
12.	To implement Dijkstra's shortest path algorithm on unweighted			V
	graphs so that it runs in linear time, the data structure to be used is:	1	C214443.4	
	A. Queue			
	B. Stack			
	C Hoop	1	1	

D. B - Tree ANSWER · A			
13. Which one of the following cannot be the sequence of edges added, in that order, to a minimum spanning tree using Kruskal's algorithm? Consider the following graph.	1	C214443.4	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	) E	
<ul> <li>14. Traversal of a graph is different from tree because</li> <li>A. There can be a loop in graph so we must maintain a visited flag for every vertex</li> <li>B. DFS of a graph uses stack, but inorrder traversal of a tree is recursive</li> <li>C. BFS of a graph uses queue, but a time efficient BFS of a tree is recursive.</li> <li>D. All of the above</li> <li>ANSWER : A</li> </ul>	*	C214443.5	V
<ul> <li>15. What are the appropriate data structures for following algorithms?</li> <li>1) Breadth First Search</li> <li>2) Depth First Search</li> <li>3) Prim's Minimum Spanning Tree</li> <li>4) Kruskal' Minimum Spanning Tree</li> <li>A. 1) Stack 2) Queue 3) Priority Queue 4) Union Find</li> <li>B. 1) Queue 2) Stack 3) Priority Queue 4) Union Find</li> <li>C. 1) Stack 2) Queue 3)Union Find 4) Priority Queue</li> <li>D. 1) Priority Queue 2) Queue 3) Stack 4) Union Find</li> <li>ANSWER : B</li> </ul>	100	C214443.4	V
16.A network data model is best represented using A. Tree	1	C214443.5	V

	B. Graph			
	C. Stack			
	D. Hash Table			
	ANSWER: B			
17.	Suppose we are sorting an array of eight integers using heapsort, and	1	C214443 5	V
	we have just ministed some nearby (either maxneapity or minineapity)		C214445.5	
	operations. The array now looks like this: 16 14 15 10 12 27 28 How			
	many heapify operations have been performed on root of heap?	~		
	A. 1	/		
	B. 2	r		
	C. 3 OR 4	1. C.		
	D 5 OR 6	100		
	ANSWER · B	Cornella Co	h	
10	A may been is a been where the value of each negative then on	1	<u> </u>	V
18.	A max-neap is a neap where the value of each parent is greater than or		C214442 5	V
	equal to the values of its children. Which of the following is a max-	$\sim 1$	C214445.5	
	heap?	1.1	100	
		- N	(D)	
	(A) (10) (B) (10)			
			$\langle O \rangle$	
			$\sim$	
			101	
			1 1 1	
			1	
	()		1-11	
	$\odot$		1 11	
	(10) (5)		$\sim 1$	
	(C) (D) (C)	1	· · · /	
		1	/	
	5 6 2 8	1		
		e		
			/	
	(4) $(3)$ $(2)$ $(1)$ $(1)$ $(4)$ $(6)$ $(10)$	× .	ć	
		- 1		
		1	N	
	A. A			
	B. B		The second second	
	C. C			
	D. D	0.00	ei es es -	
	ANSWER · B	166	nna i	
10	In a binary may been containing n numbers, the smallest element can	1		V
19.	he found in time	1	C214443 1	v
	be found in time		C214443.1	
	A. O(n)			
	B. O(logn)			
	C. O(loglogn)			
	D. O(1)			
	ANSWER · A			
		1		

20	Select static tree tables:	1		V
20.	A Huffman's Tree	1	C214443 5	v
	R OBST		021111010	
	C AVI Trop			
	C. AVL Het D. Both Huffmon's tree and OBST			
- 21	ANSWER : D	1		<b>T</b> 7
21.	In OBS1, the cost of searching a symbol occurring with higher	1	C214442 5	V
	frequency is	7	C214445.5	
	A. small	/		
	B. large			
	C. depends on data	1 mar 1		
	D. none	1		
	ANSWER : A	0	<u> </u>	
22.	The characters a to h have the set of frequencies based on the first 8	2	EN	V
	Fibonacci numbers as follows	$\sim 7$	C214443.5	
	a : 1, b : 1, c : 2, d : 3, e : 5, f : 8, g : 13, h : 21	$\sim$	· ~ `	
	A Huffman code is used to represent the characters. What is the	- N	$(\Omega)$	
	sequence of characters corresponding to the following code?		1-1	
	110111100111010		1031	
	A. fdheg		$1 \leq 1$	
	B. ecgdf		101	
	C. dchfg			
	D. fehdg		The second se	
	ANSWER : A		1111	
23.	Which of the following is true?	1	1-1	V
	A. Prim's algorithm initialises with a vertex		C214443.4	
	B. Prim's algorithm initialises with a edge		$\sim 1$	
	C. Prim's algorithm initialises with a vertex which has smallest edge		~/	
	D. Prim's algorithm initialises with a forest	1	/	
	ANSWER A	1		
24	Prim's algorithm is a	1		V
21.	A Divide and Conquer algorithm	- ميليد	C214443.4	•
	B Greedy Algorithm	~/		
	C Dynamic Algorithm	/	\	
	D. Approximation Algorithm		N	
			100 million (100 million)	
25	Which of the following is true?	1		V
23.	A Drim's algorithm can also be used for disconnected graphs	0.0	C214443 4	v
	A. FILLS algorithm can also be used for disconnected graphs <b>P</b> . Kruskal's algorithm can also run on the disconnected graphs	166	5217773.4	
	D. KIUSKAI S Algorithm is simpler than Kryshol's clear three			
	C. Frini's algorithm is simpler than Kruskal's algorithm			
	D. In Kruskal's sort edges are added to MIST in decreasing order of			
	their weights			
	ANSWEK: B			
	Unit VI		1	
1.	Files are logically partitioned into storage units of fixed length known	1	G014440 -	VI
	as		C214443.6	

	A Tracks			
	A. Hacks			
	C. Soctors			
	C. Sectors			
	ANSWER · B			
2	It is not possible to combine two or more file opening mode in open	1		VI
۷.	Omethod	1	C214443 6	V I
		Sec.	0211113.0	
	A. Huc B. Falso	7		
	D. Paise	1		
2	ANSWER. A	1		VI
5.	A int	1	C214443.6	V I
	R hool	1	0211113.0	
	C float	6.2	N	
	C. Hoat	1	1.N	
		$\sim 1$	$\sim$	
			101	* **
4.	which stream class is to only write on files ?	1	C214442 C	VI
	A. ofstream		C214443.0	
	B. ifstream		$\langle \cup \rangle$	
	C. fstream		101	
	D. iostream		100	
	ANSWER : A			
5.	Consider a hash table of size seven, with starting index zero, and a	2		VI
	hash function $(3x + 4)$ mod 7. Assuming the hash table is initially		C214443.6	
	empty, which of the following is the		1-11	
	contents of the table when the sequence 1, 3, 8, 10 is inserted into the		1-1	
	table using closed hashing?	1	5/	
	Note that '_' denotes an empty location in the table		/	
	A. 8, _, _, _, _, _, 10	1	/	
	B. 1, 8, 10, _, _, _, 3			
	C. 1, _, _, _, _, _,3		/	
	D. 1, 10, 8, _, _, _, 3	$\mathcal{T}_{i}$	<	
	ANSWER : B	1	1	
6.	If several elements are competing for the same bucket in the hash	1	1	VI
	table, what is it called?		C214443.6	
	A. Diffusion			
	B. Replication	المتعر المتعرين	nina ar II	
	C. Collision	166	ппа і	
	D. None of the mention			
	ANSWER : C			
7.	Which is correct syntax ?	1		VI
	A. myfile:open ("example.bin", ios::out);		C214443.6	
	B. myfile.open ("example.bin", ios::out);			
	C. myfile::open ("example.bin", ios::out);			
	D. myfile.open ("example.bin", ios:out);			
	ANSWER : B			
·			•	

		r		
8.	How to get position to the nth byte of fileObject ?	1	0014442 6	VI
	A. fileObject.seekg( 'filename',n );		C214443.6	
	B. fileObject.seekg( n, 'filename' );			
	C. fileObject.seekg( n );			
	D. fileObject.seekg( n, ios::app );			
	ANSWER: C			
9.	ios::trunc is used for ?	1		VI
	A. If the file is opened for output operations and it already existed, no	~	C214443.6	
	action is taken.	/		
	B. If the file is opened for output operations and it already existed, its	ſ		
	previous content is deleted and replaced by the new one.	1. A.		
	C. If the file is opened for output operations and it already existed,	12		
	then a new copy is created.	$\sim$	N	
	D. None of above	<u>v</u> ,	A	
	ANSWER : B	1		
10.	Which functions allow to change the location of the get and put	1		VI
	positions ?	~ \	C214443.6	
	A. sg() and sp()		1 million	
	B. gog() and gop()		$\langle O \rangle$	
	C. seekg() and seekp()		$1 \leq 1$	
	D. sekg() and sekp()		101	
	ANSWER : C			
11.	offset counted from the current position using ?	1	L Para	VI
	A. ios::cur		C214443.6	
	B. ios::cr		1-1	
	C. ios::curr		1. 11	
	D. ios::current		$\langle \neg \neg \rangle$	
	ANSWER : A	1	1	
12.	Which of the following true about FILE *fp?	1	/	VI
	A. FILE is a stream	1	C214443.6	
	B. FILE is a buffered stream		/	
	C. FILE is a keyword in C for representing files and fp is a variable of	大 .	K	
	FILE type	1	N.	
	D. FILE is a structure and fp is a pointer to the structure of FILE type	and the second s	1	
	ANSWER : D		~	
13.	If a file you are opening for appending does not exist, the operating	1		VI
	system will detect the missing file and terminate the operation.		C214443.6	
	A. True	166	rina I	
	B. False	- 100 - 100 -		
	ANSWER : B			
14.	In the code fout.open("scores.dat", ios::out);	1		VI
	A. ios::out is the stream operation mode.		C214443.6	
	B. fout is the header file reference.			
	C. ios::out is the stream variable name			
	D. fout is the name of the file.			
-				

			SE (Semeste	er I)
15.	The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initial empty hash table of length 10 using open addressing with h function $h(k) = k \mod 10$ and linear probing. What is the resultant h table?	ally 1 ash ash	C214443.6	VI
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	(A) (B) (C) (D)	- 99	N.	
	A. A B. B C. C		2	
	D. D ANSWER : C		121	
16.	Given the following input (4322, 1334, 1471, 9679, 1989, 6171, 61	.73, 1	1071	VI
	4199) and the hash function $x \mod 10$ , which of the follow	ring	C214443.6	
	statements are tr	ue?		
	ii. 1471, 6171 hash to the same value		1-1	
	iii. All elements hash to the same value		1	
	iv. Each element hashes to a different value		151	
	A. i Only	/	1	
	B. ii Only	1		
	C. i and ii Only	1	/	
	D. III and IV Only ANSWER $\cdot C$	a file	/	
17	A hash function h defined h(key)=key mod 7, with linear probing	z is 1	1	VI
	used to insert the keys 44, 45, 79, 55, 91, 18, 63 into a table inde	xed	C214443.6	
	from 0 to 6. What will be the location of key 18?		~	
	A. 3	_		
	B. 4	100	rina I	
		1ee	ing i	
	ANSWFR · C			
18	Which of the following statement(s) is TRUE?	1		VI
10.	1. A hash function takes a message of arbitrary length and generat	es	C214443.6	· ±
	a fixed length code.			
	2. A hash function takes a message of fixed length and generates a	ι		
	code of variable length.			

	2 A hash function may give the same bash value for distinct			
	5. A flash function may give the same flash value for distinct			
	A 1 Only			
	A. I Olly B. 1 and 2 only			
	D. 1 and 2 only			
	D. 2 Only			
	D. 2 Only ANSWED · C			
10	Which of the following is not a collision resolution strategy for open	1		M
19.	addressing?	12	C214443 6	V I
	A Lincor Drohing	V	0214445.0	
	A. Linear Proofing			
	D. Quadratic Probing	1		
	C. Double Hasming	1		
	D. Renasning	( )	N	
20	ANSWER: D			3.73
20.	A nash table contains 10 buckets and uses linear probing to resolve	$\mathbb{N}^{n}$	C214443 6	V1
	constions. The key values are integers and the hash function used is $1000000000000000000000000000000000000$	100	C214443.0	
	key % 10. If the values 43, 165, 62, 123, 142 are inserted in the table, $142$	- N	100	
	in what location would the key value 142 be inserted?		101	
	A. 2 D. 2		101	
	B. 3		101	
	C. 4		101	
	D. 6			
	ANSWER : D		1.000	* **
21.	An advantage of chained hash table (external hashing) over the open	1	C214442 6	VI
	addressing scheme is		C214445.0	
	A. Worst case complexity of search operations is less		1 million	
	B. Space used is less	1		
	C. Deletion is easier	1		
	D. None of the above	1	/	
	ANSWER : C	ſ., .	- /	<b>X</b> 7 <b>X</b>
22.	What can be the techniques to avoid collision?	1	C214442 6	VI
	A. Make the hash function appear random	75.7	C214445.0	
	B. Use the chaining method	1	1	
	C. Use uniform hashing	-	1	
	D. All of the mentioned		1000	
	ANSWEK: D	1		<b>T</b> 7 <b>T</b>
23.	what is a nash function?	la'a	C214442 6	VI
	A. A function has allocated memory to keys	166	C214443.0	
	B. A function that computes the location of the key in the array			
	C. A function that creates an array			
	D. None of the mentioned			
	ANSWEK: B	1		<b>T</b> 7 <b>T</b>
24.	A technique for direct search is		$C214442 \in$	VI
	A. Binary Search		C214443.0	
	B. Linear Search			
	U. Tree Search			





# **SYLLABUS**

<b>Teaching Scheme:</b> Lectures: 3 Hours/Week	Credits: 03	Examination Scheme: In-Semester : 30 Marks			
		End-Semester: 70 Marks			
Prerequisites:	ज्यानमयो भा				
1. Principles of Programming 1 Course Objectives :	Languages.	1,7			
1. Apply concepts of object-ori	ented paradigm.	~			
2. Design and implement mode	ls for real life problems by using	g object-oriented programming.			
5. Develop object-oriented prog					
UNIT - IFOUNDATIONS O	F OBJECT-ORIENTED PRO	GRAMMING 06 Hours			
Introduction OOP : Software	Evolution, Introduction to Proceed	lural, Modular, Object-Oriented			
and Generic Programming Te	echniques, Limitations of Proc	edural Programming, Need of			
Object-Oriented Programming	g, Fundamentals of Object-Ori	iented Programming: Objects,			
Classes, Data Members, Met	hods, Messages, Data Encaps	ulation, Data Abstraction and			
Information Hiding, Inheritance	e, Polymorphism, Static and Dyna	amic Binding, Message Passing.			
UNIT – II CLASSES, OBJE	CTS AND METHODS	06 Hours			
Class: Creating a Class, Visibili	ty/Access Modifiers, Encapsulat	ion, Methods: Adding a Method			
to Class, Returning a Value, A	Adding a Method That Takes Pa	arameters, The 'this' Keyword,			
Method Overloading, Object C	reation, Using Object as a Parar	neters, Returning Object, Array			
of Objects, Memory Allocation	: 'new', Memory Recovery: 'dele	ete', Static Data Members, Static			
Methods, Forward Declaration,	Class as Abstract Data Types (A	ADTs), Classes as Objects.			
UNIT – III CONSTRUCTO	RS AND DESTRUCTORS	06 Hours			
Constructors: Introduction, Us	se of Constructor, Characterist	ics of Constructors, Types of			
Constructor, Constructor Over	loading, Dynamic Initialization	of an Object, Constructor with			
Default Arguments, Symbolic	Constants, Garbage Collection: I	Destructors and Finalizes.			
UNIT – IV INHERITANCE	AND POLYMORPHISM	06 Hours			
Inheritance: Introduction, Need of Inheritance, Types of Inheritance, Benefits of Inheritance,					
Cost of Inheritance, Constructo	Cost of Inheritance, Constructors in derived Classes, Method Overriding, Abstract Classes and				
Interfaces.					
Polymorphism and Software	Reuse: Introduction, Types of	Polymorphism (Compile Time			
and Run Time Polymorphism),	Mechanisms for Software Reuse	e, Efficiency and Polymorphism			

## UNIT – V EXCEPTION HANDLING AND GENERIC PROGRAMMING 06 Hours

**Exception:** Errors, Types of Errors, Exception and its Types, Exception-Handling Fundamentals, Uncaught Exception, Using try and Catch, Multiple Catch Clauses, Nested Try Statements, User Define Exception using Throw.

**Generics:** What are Generics? Introduction to Language Specific Collection Interface: List Interface and Set Interface, Collection Classes: ArrayList Class and LinkedList Class.

#### UNIT – VI FILE HANDLING AND DESIGN PATTERNS

## 06 Hours

**File Handling:** Introduction, Concepts of Stream, Stream Classes, Byte Stream Classes, Character Stream, Classes, Using Stream, and Other Useful I/O Classes, Using the File Class, Input/output Exceptions, Creation of Files, Reading/Writing Character, Reading/Writing Bytes, Handling Primitive Data Types, Concatenating and Buffering Files, Random Access Files. Design Patterns: Introduction, Types of Design Patterns, Adapter, Singleton, Iterator

THEORY :

Text Books

- 1. An Introduction to Object Oriented Programming (3rd Ed), by Timothy A. Budd, published by Addison-Wesley,2002
- 2. E. Balaguruswamy, "Object Oriented Programming Using C++ and Java", Tata McGraw Hill



# **COURSE OUTCOMES**

		Mapping	Assessment	Blooms
CO No.	Course Outcome	With Unit /	Tashaisus	Taxonomy
	(I THI	Assignment	rechnique	Category
CO214444.1	Differentiate various programming paradigms.	DUC	UNIT TEST - I	L2-Understand
CO214444.2	Identify classes, objects, methods,	II,III	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L2-Understand
	and handle object creation,		UNIT TEST - II	N
	initialization, and Destruction to	122		
	model real-world problems.	LAD,		5
CO214444.3	Identify relationship among	IV	~	L2-Understand
	objects using inheritance and	1125	UNIT TEST – III	151
	polymorphism principles.	Ep		1
CO214444.4	Handle different types of	v	~~	L3-Apply
	exceptions and perform generic	1 6/25	UNIT TEST – VI	1-11
	programming.	1 6	17 1	-1
CO214444.5	Use of files for persistent data	VI	UNIT TEST – V	L2-Apply
	storage for real world application.			
CO214444.6	Apply appropriate design patterns	V,VI	1.	L3-Apply
	to provide object-oriented		UNIT TEST - VI	
	solutions.	no -	5	
				1. Contract of the second seco

# Modern College of Engineering

Sr. No.	Unit	Prerequisite subject name
1.	Foundations of Object	Principles of Programming
	Oriented Programming	Languages
2.	Classes, Objects and	Principles of Programming
	Methods	Languages
3.	Constructors and	Principles of Programming
/	Destructors	Languages
4,	Inheritance and	Principles of Programming
14	Polymorphism	Languages
5.	Exception Handling	Principles of Programming
1201	and Generic	Languages
01	Programming	1822 10
6.	File Handling and	Principles of Programming
No.	Design Patterns	Languages
E)	X Pu	Le - 5 *
_		
Moc	iern Colleg	e of Engineering
		ne - 5 *

# **PREREQUISITES**

# **TEACHING PLAN**

**Teaching Plan Short** 

Semester :- I Academic Year:- 2021-22 SE IT A & SE IT B  $\underline{\text{Class}}$  : -14 G Subject :- OOP Faculty In charge :- Mrs.Rajashri Sadafule / Mrs.Ashwini Bhmare. No. of Lectures/ weeks: 3

w. e. f. :- 5/07/2021 Division: A & B Subject Code :- 214444

Lecture Plan •

		The second se	and the second	
Sr. No.	Unit No.	Unit/ Topic Name	Start Date	End Date
1.	Ι	Foundations of Object Oriented Programming	August 3 rd Week	August 4 th Week
2.	II	Classes, Objects and Methods	September 1 st Week	September 2 nd Week
3.	III	Constructors and Destructors	September 3 rd Week	September 5 th Week
4.	IV	Inheritance and Polymorphism	October 1 st Week	October 2 nd Week
5.	V	Exception Handling and Generic Programming	October 3 rd Week	October 4 th Week
6.	VI	File Handling and Design Patterns	November 1 st Week	November 3 rd Week



Lect.	Unit	Main Topic to be	Sub Topics to	Chap. No. & Reference	CO to	Measurable	Mode of
No	No.	Covered	be Covered	Books	Attain	to attain CO	Delivery
1	Ι	Control structures	375	Lesson 2, YashwantKanetkar, "Let us C", BPB Publication	C214444.1	MCQ Test	Chalk and Talk , Machine Projector for
2		Arrays		Lesson 8,	- \`#		Demo of
3		2D Arrays and nD Array	Matrix coperations	YashwantKanetkar, "Let us C", BPB Publication		12	Implementation, Video
4		Functions	Pass by Value	Lesson 5, YashwantKanetkar, "Let us C", BPB Publication	3	181	
5		RO	Pass by reference	Lesson 5, YashwantKanetkar, "Let us C", BPB Publication	>		
5		String manipulation	2	Lesson 9, YashwantKanetkar, "Let us C", BPB Publication	/		
7		Structure	~ ~	Lesson 10,			
3		Structure, union	*	YashwantKanetkar, "Let us C", BPB Publication	4		
)	II	Introduction to	Dynamic	Lesson 5,	C214444.2	MCQ Test	Chalk and Talk,
		Pointers	Memory	YashwantKanetkar, "Let		N	Machine
			allocation,	us C", BPB Publication			Projector of
		Mod	pointer to pointer, Array of Pointers	ege of Eng	jineei	ring	Demo Implementation, Video

10		Pointer to arrays	Pointer to single	Lesson 8,			
			dimensional	YashwantKanetkar, "Let	111		
			arrays.	us C", BPB Publication	21		
11			Pointer to	Lesson 8,	-		
			Multidimensiona	YashwantKanetkar, "Let	11-		
			1 Arrays	us C", BPB Publication	(0)	N	
12		String manipulation	2/	Lesson 8,	C214444.2	MCQ Test	
		using pointers		YashwantKanetkar, "Let	- \`\$		
		141	/ <	us C", BPB Publication	× 1	101	
13		structure		Lesson 10,	\ \	12	
		manipulation using	- C.	YashwantKanetkar, "Let	· · · ·	101	
		pointers		us C", BPB Publication	C	121	
14		Pointer to functions	2011	Lesson 5,	>	101	
			~~~	YashwantKanetkar, "Let			
		1 au	m	us C", BPB Publication		1111	
15		Pointer to file	52	Lesson 12,	22	1-1	
		structure and basic	1	YashwantKanetkar, "Let	r .	1	
		operations on file		us C", BPB Publication	/	∇I	
16		Functions used for	~	Lesson 12,		1	
		text and binary file	N 0	YashwantKanetkar, "Let			
		handling in C	1 N	us C", BPB Publication			
17	III	Introduction to Data	Concept of data,	Chapter 1, E. Horowitz,	C214444.3	MCQ Test	Chalk and Talk
		Structures	Data object, Data	S. Sahani, S. Anderson-			
		Abstract Data	structure,	Freed "Fundamentals of		1	
		Types, Realization	The second se	Chapter 1 E Horowitz		No. of Concession, Name	
		of ADT in 'C'.		S Sahani S Anderson			
18		Concept of	Primitive and	Freed "Fundamentals of	lineo	ina l	
		Classification of	non-primitive,	Data Structures in C"	hueer		
		Data Structures	linear and Non-				
	•						

19 Analysis of algorithm Frequency count and is importance in analysis of an algorithm C214444.3 MCQ Test Chalk and Talk 20 Time complexity of an algorithm Time complexity of an algorithm C214444.3 MCQ Test Chalk and Talk 21 Big O, Omega and Theta notations Big O, Omega and Analysis of an algorithm MCQ Test Chalk and Talk 22 Best, Worst and Average case analysis of an algorithm Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk 23 IV Need of searching and sorting. Concept of internal and external sorting. Sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" C14444.4 MCQ Test Chalk and Talk 24 Searching methods: Linear search algorithms Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" C14444.4 MCQ Test Chalk and Talk								
19 Analysis of algorithm Frequency count and is importance in analysis of an algorithm C214444.3 MCQ Test Chalk and Talk 20 Time complexity of an algorithm Time complexity of an algorithm C214444.3 MCQ Test Chalk and Talk 21 Time complexity of an algorithm Big 'Q'. Omega and Theta notations C214444.4 MCQ Test Chalk and Talk 22 Best, Worst and Average case analysis of an algorithm Chapter 7. E. Horowitz, S. Sahani, S. Anderson-Freed Tundamentals of Data Structures in C" MCQ Test Chalk and Talk. 23 IV Need of searching and external sorting, sort stability Chapter 7. E. Horowitz, S. Sahani, S. Anderson-Freed Tundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk. 24 Searching methods: Linear search algorithms Freed Tundamentals of Data Structures in C" Cal444.4 MCQ Test Chalk and Talk.				linear, static and	नमया भन्न			
19 Analysis of algorithm and its importance in and its importance in algorithm C214444.3 MCQ Test Chalk and Talk 20 Time complexity & Space complexity & Space complexity of an algorithm Time complexity of an algorithm C214444.4 MCQ Test Chalk and Talk 21 Big O. Omega and Theta notations Big O. Omega and Theta notations C214444.4 MCQ Test Chalk and Talk 22 Best, Worst and Average case analysis of an algorithm Cale of searching and sorting, Concept of internal and external sorting, sort stability. Chapter 7, E. Horowitz, Sabani, S. Anderson-Freed "Fundamentals of Data Structures in C" C14444.4 MCQ Test Chalk and Talk 24 Searching methods: Linear search algorithms Chapter 7, E. Horowitz, algorithms C14444.4 MCQ Test Chalk and Talk				dynamic,		111		
19 Analysis of algorithm Frequency count and its importance in analysis of an algorithm C214444.3 MCQ Test Chalk and Talk 20 Time complexity of an algorithm Time complexity of an algorithm C214444.3 MCQ Test Chalk and Talk 21 Big 'O'. Omega and Theta notations Big 'O'. Omega and Theta notations Offen algorithm Offen algorithm 22 Best, Worst and Average case analysis of an algorithm C214444.4 MCQ Test Chalk and Talk 23 IV Need of searching and sorting. Concept of internal and sorting. Concept of internal and sorting. Sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed 'Tundamentals of Data Structures in C'' C214444.4 MCQ Test Chalk and Talk 24 Searching methods: Linear search algorithms Linear search algorithms Calue of searching and sorting. Sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed 'Tundamentals of Data Structures in C'' C214444.4 MCQ Test Chalk and Talk				persistent and	= DUAR	~		
19 Analysis of algorithm Frequency count and its importance in analysis of an algorithm C214444.3 MCQ Test Chalk and Talk 20 Time complexity & Space complexity of an algorithm Time complexity & Space complexity of an algorithm Image: Complexity of an algorithm Image: Complexity of an algorithm Image: Complexity of an algorithm 21 Best, Worst and Average case analysis of an algorithm Rest, Worst and Average case analysis of an algorithm Chapter 7, E. Horowitz, S. Sahani, S. Anderson Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk Presentation, Video 23 IV Need of searching and sorting, Concept of internal and external sorting, sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk Presentation, Video				ephemeral data	EDOUA	200		
19 Analysis of algorithm Frequency count and its importance in analysis of an algorithm C214444.3 MCQ Test Chalk and Talk 20 Time complexity & Space complexity of an algorithm Time complexity of an algorithm Space complexity of a				structures		11-		
20 algorithm and its importance in analysis of an algorithm 20 Time complexity & Space complexity of an algorithm Space complexity of an algorithm 21 Big 'O', Omega and Theta notations Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm Need of searching and sorting, Concept of internal and external sorting, sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" Cla4444.4 MCQ Test Chalk and Talk. Presentation, Video 24 Searching methods: Linear search algorithms	19		Analysis of	Frequency count		C214444.3	MCQ Test	Chalk and Talk
20 importance in analysis of an algorithm 20 Time complexity & Space complexity & Space complexity of an algorithm 21 Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and sorting, concept of internal and external sorting, sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk Presentation, Video			algorithm	and its		~	2	
20 analysis of an algorithm 20 Time complexity & Space complexity of an algorithm 21 Big 'O'. Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and sorting, Concept of internal and external sorting, sort stability 24 Searching methods: Linear search algorithms			1.92	importance in		- N#		
20 Image: algorithm of the complexity of an algorithm 21 Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and external sorting, Concept of internal and external sorting, sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk. Presentation, Video			141	analysis of an	11201	~	101	
20 Time complexity 21 Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and external sorting, Concept of internal and external sorting, sort stability 24 Searching methods: Linear search algorithms			1021	algorithm	LIS HHZ		12	
21 Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and sorting, Concept of internal and external sorting, sort stability 24 Searching methods: Linear search algorithms	20		151	Time complexity	- HHC	~	101	
21 Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and sorting, Concept of internal and external sorting, sort stability 24 Searching methods: Linear search algorithms			1071	& Space	11122	C	121	
21 algorithm 21 Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and sorting, Concept of internal and external sorting, sort stability. Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" Clatk and Talk Presentation, Video 24 Searching methods: Linear search algorithms Image: Concept of internal algorithms Image: Concept of internal and external sorting, sort stability. Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" Clatk and Talk Presentation, Video				complexity of an	I I FAC.		101	
21 Big 'O', Omega and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and sorting, Concept of internal and external sorting, sort stability. 24 Searching methods: Linear search algorithms				algorithm	~ 변종			
22 and Theta notations 22 Best, Worst and Average case analysis of an algorithm 23 IV Need of searching and sorting, Concept of internal and external sorting, sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk Presentation, Video 24 Searching methods: Linear search algorithms Data Structures in C" Data Structures in C" Data Structures in C"	21		12	Big 'O', Omega	el alvo	·	1111	
22 IV Need of searching and sorting, Concept of internal and external sorting, sort stability Chapter 7, E. Horowitz, S. Sahani, S. Anderson-Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk Presentation, Video 24 Searching methods: Linear search algorithms Data Structures in C" Data			1LL	and Theta	1 1 1 1/2 19	2,2	1-1	
22 Best, Worst and Average case analysis of an algorithm Average case analysis of an algorithm Image: Chapter 7, E. Horowitz, S. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C" C214444.4 MCQ Test Chalk and Talk Presentation, Video 24 Searching methods: Linear search algorithms Data Structures in C" Image: Concept of internal and external sorting, Bearching algorithms Linear search algorithms Image: Concept of internal and external sorting, Bearching algorithms Image: Concept of internal Bearching			10.1	notations	$\ln \alpha$	r	1. 11	
23IVNeed of searching and sorting, Concept of internal and external sorting, sort stabilityChapter 7, E. Horowitz, S. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C"C214444.4MCQ TestChalk and Talk Presentation, Video24Searching methods:Linear search algorithmsLinear search algorithmsImage: Concept of internal and external sorting, and external sorting, algorithmsLinear search algorithmsConcept of internal sort stabilityChapter 7, E. Horowitz, S. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C"Call the search sort stabilityImage: Concept of internal and external sorting, algorithmsChapter 7, E. Horowitz, S. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C"MCQ Test Sort stabilityChalk and Talk Presentation, Video24Searching methods:Linear search algorithmsImage: Concept of internal algorithmsImage: Concept of internal sort stabilityImage: Concept of internal sort stability24Searching sort stabilityIma	22		10-1	Best, Worst and	1119/	/	5/	
23IVNeed of searching and sorting, Concept of internal and external sorting, Sort stabilityChapter 7, E. Horowitz, S. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C"C214444.4MCQ TestChalk and Talk Presentation, Video24Searching methods:Linear search algorithmsLinear search algorithmsImage: Concept of internal sort stabilityLinear search algorithmsImage: Concept of internal sort stabilityImage: Concept of inter				Average case	1		1	
23IVNeed of searching and sorting, Concept of internal and external sorting, Sort stabilityChapter 7, E. Horowitz, S. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C"C214444.4MCQ TestChalk and Talk Presentation, Video24Searching methods:Linear search algorithmsImage: Concept of internal and external sorting, Bata Structures in C"Image: Concept of internal Sort stabilityImage: Concept of internal and external sorting, Bata Structures in C"Image: Concept of internal Sort stabilityImage: Concept of internal Bata Structures in C"Image: Concept of internal Bata Structures in C"Image: Concept of internal Sort stabilityImage: Concept of internal Bata Structures in C"Image: Concept of internal Bata Structures in C"Image: Concept of internal Sort stabilityImage: Concept of internal Bata Structures in C"Image: Concept of internal Bata Structures in C" <td< td=""><td></td><td></td><td></td><td>analysis of an</td><td></td><td>/</td><td></td><td></td></td<>				analysis of an		/		
23IVNeed of searching and sorting, Concept of internal and external sorting, sort stabilityChapter 7, E. Horowitz, S. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C"C21444.4MCQ TestChalk and Talk Presentation, Video24Searching methods:Linear search algorithmsIntegration Searching algorithmsIntegration Searching Searching algorithmsSearching Searching Searching AlgorithmsLinear search Searching Searching Searching SearchingIntegration Searching Searching SearchingLinear search Searching SearchingIntegration Searching Searching SearchingIntegration Searching SearchingIntegration SearchingIntegration SearchingIntegration Searching SearchingIntegration SearchingI				algorithm		/		
and sorting, Concept of internal and external sorting, sort stabilityS. Sahani, S. Anderson- Freed "Fundamentals of Data Structures in C"Presentation, Video24Searching methods:Linear search algorithmsalgorithmsImage: Concept of internal Data Structures in C"Presentation, Video	23	IV	Need of searching	* ~	Chapter 7, E. Horowitz,	C214444.4	MCQ Test	Chalk and Talk,
24 Searching methods: Linear search algorithms Freed "Fundamentals of Data Structures in C" Video			and sorting,	C R	S. Sahani, S. Anderson-			Presentation,
24 Searching methods: Linear search algorithms Data Structures in C"			Concept of internal	~ P	Freed "Fundamentals of	_	<	Video
24 Searching methods: Linear search algorithms			sort stability	- Contraction of the local division of the l	Data Structures in C"		1	
methods: algorithms of ege of Engineering	24		Searching	Linear search				
In ouern oonege of Engineering			methods:	algorithms	one of End	inco	rina I	
als Duras Eals]	1000	GEN GUN	ieñe ni ruñ	hunce	9-1	1
					Duna 5 + -			

25		binary search and	7441 422			
		comparison with		111		
		linear search and	- DULA	21		
		complexity	EDULA	-		
		analysis		172		
26	Sorting methods:	Bubble sort and		VO1	S	Chalk and Talk,
	10	time and space		~~^	2	Presentation,
	1.9	complexity		- N.P		Video
	141	analysis	1000	N	<0 \	
27	10-1	selection sort and	Chapter 1, E. Horowitz,		1	
	1441	time and space	S. Sahani, S. Anderson-	~ ·	101	
	101	complexity	Freed "Fundamentals of	C	101	
	1	analysis	Data Structures in C"	2	1011	
28		Insertion sort and	Chapter 7, E. Horowitz,		Contraction of the local division of the loc	
	121	time and space	S. Sahani, S. Anderson-	S	11111	
		complexity	Freed "Fundamentals of	22	1-1	
	101	analysis	Data Structures in C"		1	
29	1-1	Merge sort and		C214444.4	MCQ Test	Chalk and Talk,
		time and space	100000		1	Presentation
		complexity	1922	/		
		analysis		1	/	
30	N	Quick sort and		· * .	/	
	- F	time and space	E			
		complexity	una - D		<u> </u>	
		analysis	4110			
31		Bucket sort and			_	
	- Mode	their time and	lene of Enr	incor	ina L	
	moun	space complexity	oge or Eng	1		
		analysis	Puna 5 +=			
			1 61116 10 11			

							SE (Semester I)
32	VI	Concept of linked organization	singly linked list as an ADT	Chapter 4, E. Horowitz, S. Sahani, S. Anderson-	C214444.2 and	End Term Test	Chalk and Talk and Presentation
33			doubly linked list	Freed "Fundamentals of	C214444.5		
			as an ADT	Data Structures in C"	-		
34		/	circular linked		172		
	_	1	list as an ADT		NO.	N	
35		Representation and	-/		$\overline{1}$		
		manipulations of	/ _	122	\"		
		polynomials using linked lists	5	LANS	\	10	
36		Comparison of a		CHIK.		101	
50		sequential and	11		2	121	
		linked memory	/614	I I ELC	\rightarrow	101	
		organization,		LL 1277	~~~~		
37		Concept of	m	R MA	S	1 m	
		Generalized Linked	52	112 122 19	22	1-11	
		List, representation	~~~	111 011		1-1	
		polynomial using			/	1	
20	N7	GLL	<u> </u>		C014444.5	F 17	
38	V	Concept of	< <	R5 Chapter 2	C214444.5	End Term	Chalk and Talk
		organization	1		<	Test	and Presentation
		Concept of Linear	~ ~		- × /		
		data structures.	$\sim \rho$	una - D	/	<u>\</u>	
		Concept of ordered		une - j		1	
		list					
39		Multidimensional	Row major and	Chapter 2, E. Horowitz,	linee	rina I	
		Arrays and their	column major	S. Sahani, S. Anderson-	Juneer		
			form and	Pune - 5 * =			

	storage	address	Freed "Fundamentals of										
	representation	calculation	Data Structures in C"	1.7									
40	Representation of	algorithms for	- DU -	21/		Chalk and Talk							
10	sparse matrix using	sparse matrix	-DUCA	~		Presentation							
	arrays	addition and		7.		Video							
	unuyo	simple transpose		10	N	1400							
	1.4	and Analysis		\sim	N.								
41	1.93	algorithms for		1									
	141	sparse matrix	(ANL	N	101								
	1021	fast transpose	LK HH2	× 1	1.0								
	1451	and Analysis	L- HHC~	~	VO1								
42	Polynomial	4		C	121								
	representation using	2011	I BAC.	~	101								
	arrays and Analysis												
43	Concept of stack	~~~	Chapter 3, E. Horowitz,	h.,	1								
	and its	52	S. Sahani, S. Anderson-	22	1-1								
	implementation	1	Freed "Fundamentals of		1								
44	Use of stack it in	Recursive	Data Structures in C"	C214444.5	1								
	recursion,	algorithms e.g.	100000		1								
		Factorial,		1									
		Fibonacci series,		1									
		etc	_	× .	/								
45	Concept of Queue	5	E	~									
	and its	~ ~	Ino - D		N								
	implementation	No. of Concession, Name	4116 _		The second se								
	Mod	ern Coll	lege of Eng	gineer	ring								
'ES's MCO	E, Information Technology					ES's MCOE. Information Technology Page - 127 -							

UNIT WISE QUESTION BANK

Unit-I

Sr.	Question	CO No.	Mar	Universit
No			ks	y Year
1	Write benefits of OOP.	CO214444.1	4	
2	Explain Friend function using example	CO214444.1	6	
3	Differentiate between Procedural Oriented Programming and	CO214444.1	6	
	Object-oriented Programming.			
4	Short note public, private and protected members	CO214444.1	4	
5	What is static data member and static member function?	CO214444.1	6	
	Write its properties.	1		
6	Explain features of object-oriented programming.	CO214444.1	4	
7	What are the limitation of object oriented programming?	CO214444.1	4	
	1.2/	1	~	
8	Explain following terms: Object, Class	CO214444.1	6	
9	Explain following terms: inheritance and polymorphism.	CO214444.1	6	
10	List and explain fundamentals of Object-Oriented	CO214444.1	6	
	Programming	- I	С	
11	Explain Data Encapsulation, Data Abstraction and	CO214444.1	8	
	Information Hiding in detail.	5 /	I.I.I	1
12	Explain need of Object-Oriented Programming.	CO214444.1	4	

<u>Unit-II</u>

Sr.	Question	CO No.	Mar	Universit
No			ks	y Year
1	Explain Encapsulation with Example.	CO214444.2	4	
2	What is Memory Allocation? Explain 'new', Memory	CO214444 2	6	
	Recovery: 'delete' keywords.	002111112		
3	Explain method overloading with example.	CO214444.2	6	
4	What is meant by static data members and static methods?	CO214444.2	6	-
5	Explain Abstract Data Types?	CO214444.2	610	
6	Enlist and explain different Access Modifiers/	CO214444.2	9	
7	Write a short note on:		6	
	1. Class	CO214444.2		
	2. Object			
	3. This keywork			
----	---	------------	---	--
8	What is static data member and static member function ?	000144440	8	
	Write its properties	CO214444.2		
9	Short note public, private and protected members	CO214444.2	8	
10	What is class? how does it accomplish data hiding?	CO214444.2	5	
11	What are objects? How they are created?	CO214444.2	4	
12	Describe the mechanism of accessing data members and	~	9	
	member functions in the following cases:	>>		
	1. Inside a main program.	CO214444.2		
	2. Inside a member function of same class.	~1	N	
	3. Inside a member function of another class.	\".	0	

Sr.	Question	CO No.	Ma	Universit
No	SI QUILEGS	>	rks	y Year
1	What is constructor? Is it mandatory to use constructor in a	CO214444.2	6	7/
	class?	\geq 1	-	1
2	How do we invoke constructor member function?	CO214444.2	4	7
3	List some of special properties of the constructor functions.	CO214444.2	6	/
4	What is parameterized constructor?	CO214444.2	6	
5	What do you mean by dynamic initialization of objects?	CO214444 2	6	
	Why do we need to do this?			
6	How is dynamic initialization of object achieved?	CO214444.2	4	
7	Describe the importance of destructor.	CO214444.2	4	
8	explain garbage collection with different options.	CO214444.2	8	
9	Write a short note on:	jineeri	8	
	1. Destructor	CO214444.2		
	2. Finalize keyword			_
10	Who we can achive garbage collection using finalize	CO214444 2	4	
	option?	0.0211111.2		

Unit IV

Sr.	Question	CO No.	Marks	Universit
No				y Year
1	Explain inheritance with One Example.	CO214444.3	4	
2	What is method overriding?How it differs freom method overloading.	CO214444.3	6	
3	Explain the need of inheritance?	CO214444.3	4	
4	What is Abstract Classes?Give One Example.	CO214444.3	4	
5	Define polymorphism?also give one example of polymorphism	CO214444.3	4	
6	How would you show your understanding of constructor in derived classes?	CO214444.3	6	
7	Explain different types of inheritance with example?	CO214444.3	4	
8	Define interfaces ?Give One Example.	CO214444.3	6	
9	What are different types of polymorphism explain it with example?	CO214444.3	6	
10	What approach would you use in software reuse?	CO214444.3	6	
		S	10	

Sr.	Question	CO No.	Mar	Universit
No	APPE BT M	h	ks	y Year
1	Explain Exceptions with its types?	CO214444.4	6	
2	What is Try and Catch block?Give one example.	CO214444.4	5	
3	What is meant by Errors? Explain with Types.	CO214444.4	6	1
4	Write short note on Exception Handling Funadamentals.	CO214444.4	4	/
5	What is Multiple catch clauses?Give any one example?	CO214444.4	6	
6	Differentiate List Interface and Set Interface?	CO214444.4	6	
7	What is meant by Generics? Explain with Example.	CO214444.6	6	
8	Write short note on Uncaught Exceptions.	CO214444.4	4	
9	Compare ArrayList Class and LinkedList Class.	CO214444.4	6	
10	What are Nested Try Statements? Give one Example.	CO214444.4	5	
11	Define User Defined Exception using Throw?	CO214444.4	4	

Modern College of Engineering

Sr.	Question	CO No.	Mar	Universit
No			ks	y Year
1	What is Stream classes ?Give One Example.	CO214444.5	4	
2	Write short note on concepts of stream?	CO214444.5	4	
3	Define use of byte stream classes?	CO214444.5	4	

4	How would you use character stream classs?Give One	CO214444.5	6	
	Example.			
5	Write short note on useful i/o classes?	CO214444.5	4	
6	Explain constructor in file class?Give one example.	CO214444.5	6	
7	Describe different types of design patterns?	CO214444.6	6	
8	What is I/O exceptions ?Give One Example.	CO214444.5	6	
9	What is use of R/W Bytes ?Give One Example.	CO214444.5	6	
10	Write short note on concatenating and buffering files?	CO214444.6	4	
11	What is use of R/W Character ?Give One Example.	CO214444.5	6	

HOME AGSSIGNMENTS

UIIII-I

Sr.	Question	CO No.	Mar	Universit
No			ks	y Year
1	How would you summarise benefits of OOP.	CO214444.1	4	
2	What is the main idea of following points: Object, Class	CO214444.1	6	
3	How would compare between Procedural Oriented	CO214444.1	6	
	Programming and Object-oriented Programming.	111		
4	How would you summarise following points public, private	CO214444.1	4	
	and protected members	\sim		
5	What can you say about static data member and static	CO214444.1	6	
	member function? Write its properties.	101		
6	What is the main idea of following points: inheritance and	CO214444.1	4	
	polymorphism.	Nº As	<u></u>	
	Unit-II	- X.	2	

	Unit-II	- \	0	
Sr.	Question	CO No.	Mar	Universit
No		> \	ks	y Year
1	What is meant by Encapsulation, Data Abstraction and Information Hiding in detail? Explain with example.	CO214444.2	4	
2	What is the main idea of Memory Allocation? Explain 'new', Memory Recovery: 'delete' keywords.	CO214444.2	6	5)
3	How would you summarize method overloading with example.	CO214444.2	6	i/
4	How would you summarize Abstract Data Types?	CO214444.2	6	/
5	How would you summarize different Access Modifiers.	CO214444.2	9	

<u>Unit:III</u>

	<u>Unit:III</u>	*1		
Sr.	Question	CO No.	Mar	Universit
No	/ V yne	and the second s	ks	y Year
1	How would you summarize about constructor? Is it	CO214444 2	6	
	mandatory to use constructor in a class?	CO214444.2		
2	How do we invoke constructor member function?	CO214444.2	4	
3	List some of special properties of the constructor functions.	CO214444.2	6	
4	What do you mean by dynamic initialization of objects?	CO214444 2	6	
	Why do we need to do this?	CO214444.2		
5	How we can achieve garbage collection using finalize option?	CO214444.2	4	

<u>Unit IV</u>

Sr.	Question	CO No.	Mar	Universit
No			ks	y Year
1	How would you use inheritance ? Give One Example.	CO214444.	4	
		3		
2	What approach would you use in method overriding?	CO214444.	6	
		3		
3	How would you show your understanding of constructor in	CO214444.	6	
	derived classes?	3		
4	How would you use interfaces ?Give One Example.	CO214444.	6	
		3		
5	What approach would you use in software reuse?	CO214444.	6	
	1027	3		
	Unit-V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	

Unit-V

Sr.	Question	CO No.	Mark U	niversity
No			S	Year
1	How would you summarise Exceptions with its types?	CO214444.4	6	
2	What can you say about Try and Catch block?	CO214444.4	5	
3	State in your word Exception Handling Funadamentals.	CO214444.4	4	
4	How would you compare List Interface and Set Interface?	CO214444.4	6	
5	What is meant by Generics? Explain with Example.	CO214444.6	6	
	MEL SPLUIT	Ş.	1-1	

Sr.	Question	CO No.	Mar Universit
No			ks y Year
1	How would you use Stream classes ?Give One Example.	CO214444.5	4
2	How would you show your understanding of constructor	CO214444.5	6
	in file class?	1.	
3	How would you organize different types of design	CO214444.6	6
	patterns?	21	h
4	How would you use R/W Bytes ?Give One Example.	CO214444.5	6
5	What approach would you use in concatenating and	CO214444.6	4
	buffering files?	qineer	ing

ADDITIONAL RESOURCES

- https://www.youtube.com/watch?v=7WhnYwoBY24&list=PLlhM4lkb2sEhf5NlWeYh_gdcN49p HjVP0
- <u>https://www.youtube.com/watch?v=Imy9TEJkKa8&list=PLIhM4lkb2sEhf5NIWeYh_gdcN49pHjVP_0&index=2</u>
- <u>https://www.youtube.com/watch?v=qG4zIEjYz7I&list=PLIhM4lkb2sEhf5NIWeYh_gdcN49pHjVP0</u> <u>&index=3</u>
- <u>https://www.youtube.com/watch?v=9nRblRcb35Y&list=PLlhM4lkb2sEhf5NlWeYh_gdcN49pHjVP_0&index=4</u>
- <u>https://www.youtube.com/watch?v=Zt-</u> u1EPdlg&list=PLlhM4lkb2sEhf5NIWeYh_gdcN49pHjVP0&index=5
- <u>https://www.youtube.com/watch?v=KELJ2kD6aeU&list=PLlhM4lkb2sEhf5NlWeYh_gdcN49pHjV_P0&index=6</u>
- https://www.youtube.com/watch?v=xnh7ip5gpzc&list=PLfVsf4Bjg79DLA5K3GLblwf3baNVFO2Lq

SYLLABUS

Teaching Scheme:

Lectures: 4 Hours/Week

Credits Examination Scheme:

04In-Semester (Online): 50 Marks

End-Semester: 50 MarksUNIT – IDATA COMMUNICATION AND NETWORK MODELS06 HoursIntroduction to communication Theory - Basics of data communication, Types of Signals,A/D, D/A, A/A, D/D Signal Conversion Methods, Bandwidth Utilization and Data Rate Limits,Multiplexing Techniques, Data rate limits, Topologies, Noise, types of noise, Shannon HartleyTheorem, Channel capacity, Nyquist and Shannon Theorem, Bandwidth S/N trade off.Network Models and addressing - OSI Model TCP/IP Model (Data Format, AddressingMechanisms, Devices)

UNIT-II ERROR DETECTION, CORRECTION AND DATA LINK CONTROL 06 Hours

Data Link Layer: Data Link Layer Services, Error Detection and Correction: Introduction, Error Detection and Error Correction. **Linear Block Codes**: hamming code, Hamming Distance, parity check code. **Cyclic Codes**: CRC (Polynomials), Advantages of Cyclic Codes, Other Cyclic Codes (Examples: CHECKSUM: One's Complement, Internet Checksum). **Framing:** fixed-size framing, variable size framing.

Flow control protocols- Noiseless channels: simplest protocol, stop-and-wait protocol. Noisy channels: stop-and-wait Automatic Repeat Request (ARQ), go-back-n ARQ, Selective repeat ARQ, piggybacking.

UNIT – III MULTI-ACCESS MECHANISM AND ETHERNET STANDARDS 06 Hours Random Access Techniques: CSMA, CSMA/CD, CSMA/CA, Controlled Access Techniques: Reservation, Polling, Token Passing, Channelization: FDMA, TDMA, CDMA, Ethernet: IEEE Standards- 802.3, 802.4, 802.5, 802.6 Comparison of Ethernet Standards: Standard Ethernet, Fast Ethernet, Gigabit Ethernet with reference to MAC layer and Physical Layer (Wired Network Only)

UNIT – IV NETWORK LAYER: SERVICES AND ADDRESSING 06 Hours

Network Layer :Network Layer Services, IPv4 Addresses: Static and Dynamic Configuration Classful and Classless Addressing, Special Addresses, NAT, Subnetting, Supernetting, Delivery and Forwarding of IP Packet, Structure of Router, **IPv4**: Datagrams, Fragmentation, Options, Checksum, **IPv6Addressing**: Notations, Address Space, Packet Format, Transition from Ipv4 to IPv6

UNIT-V NETWORK LAYER: ROUTING PROTOCOLS

06 Hours

Routing: Metric, Static vs Dynamic Routing Tables, Routing Protocol, Unicast Routing Protocols - Optimality Principle, Intra and Inter Domain Routing, Shortest Path Routing, Flooding, Distant Vector Routing, Link State Routing, Path Vector Routing Interior Gateway Routing Protocol- OSPF, EIGRP, RIP, Exterior Gateway Routing Protocol– BGP

UNIT – VI TRANSPORT LAYER : SERVICES AND PROTOCOLS 06 Hours

Transport layer :Transport layer services(Duties), TCP: COTS, TCP header, Services, Segments, Connection Establishment, Flow control, Congestion Control, Congestion Control Algorithms, Leaky Bucket, Token Bucket and QoS, Timers, UDP: CLTS, UDP header, Datagram, Services, Applications, Socket: Primitives, TCP & UDP Sockets.

Text Books

1. Behrouz A. Forouzan, TCP/IP Protocol Suite, McGraw Hill Education, ISBN: 978-0-07-070652-1, 4th Edition

2. Andrew S. Tanenbaum, David J. Wethrall, Computer Network, Pearson Education, ISBN: 978-0-13-212695-3

Reference Books

1. Kurose Ross, Computer Networking: A Top Down Approach Featuring the Internet, Pearson Education, ISBN: 978-81-7758-878-1

 Behrouz A. Forouzan, Data Communication and Networking, McGraw Hill Education, ISBN: 978-1-25-906475-3, 5th Edition

Pune - 5 📧

3. Mayank Dave, Computer Network, Cengage Learning, ISBN: 978-81-315-0986-9

COURSE OUTCOMES

CO No.	Course Outcome	Mapping With Unit	Assessment Technique	Blooms Taxonomy Category
214445.1	To Compare functions of OSI and TCP/IP model using concepts of communication theory.	Unit I	Mock Insem	Level 2 Understanding
214445.2	To Analyze data link layer services, error detection and correction, linear block codes, cyclic codes, framing and flow control protocols.	Unit II	Mock Insem	Level 4 Analyzing
214445.3	To Compare different access techniques, channelization and Ethernet standards.	Unit III	Mock Insem	Level 2 Understanding
214445.4	To Apply the skills of subnetting, supernetting and routing mechanisms.	Unit IV, V	Mock Endsem	Level 3 Applying
214445.5	To Differentiate IPv4 and IPv6.	Unit IV	Mock Endsem	Level 2 Understanding
214445.6	To Illustrate services and protocols- used at transport layer	Unit VI	Mock Endsem	Level 2 Understanding

Modern College of Engineering

		<u></u>
Sr. No.	Unit	Prerequisite subject name
1.	Data Communication and Network Models	Data communication, Basics of Physical layer
2.	Error Detection, Correction and Data Link Control	Data communication, Basics of Data link layer
3.	Multi-Access Mechanism and Ethernet Standards	Data communication, Basics of Data link layer
4.9	Network Layer: Services and Addressing	Data communication, Basics of Network layer
5.	Network Layer : Routing Protocols	Data communication, Basics of Network layer
6.	Transport layer - services and protocols	Data communication ,Basics of Transport layer
Ra	ST X Pu	1200 F 1200 F ne - 5 *
Moc	lern Colleg	ge of Engineering

PREREQUISITES

TEACHING PLAN

49

Semester:-I

नमय

Academic Year: - 2021-21 <u>Class</u>: - SE IT A & SE IT B <u>Subject</u>: - BCN <u>Faculty In charge</u>: - Ms. Jyoti H. Jadhav w. e. f.:- 5-7-2021 Division: A & B <u>Subject Code</u>: - 214445 <u>No. of Lectures/ weeks:3</u>

117

• Lecture Plan

Sr. No.	Unit No.	Unit/ Topic Name	Unit/ Topic Name Start Date	
1.	Ι	Data Communication and Network Models	Aug Week 3	Aug Week 5
2.	II	Error Detection, Correction and Data Link Control	Sep Week 1	Sep Week 3
3.	III	Multi-Access Mechanism and Ethernet Standards	Sep Week 4	Oct Week 1
4.	IV	Network Layer: Services and Addressing	Oct Week 2	Oct Week 4
5.	V	Network Layer : Routing Protocols	Nov Week 1	Nov Week 3
6.	VI	Transport layer - services and protocols	Nov Week 4	Des Week 2

	Detail Teaching Plan								
Lect No	Unit No.	Main Topic to be Covered	Sub Topics to be Covered	Chap. No. & Reference Books	CO to Attai n	Measura ble to attain CO	Mode of Delivery		
1		/	Introduction to communication Theory - Basics of data communication, Types of Signals,	Chapter 1 to 6	2	>	Online Lecture and PPT		
2		12	Introduction to communication Theory -A/D, D/A, A/A, D/D Signal Conversion Methods	Andrew S. Tanenbaum, "Computer Networks",		10	Online Lecture and PPT		
3	Unit-I	Data Communication	Introduction to communication Theory -Bandwidth Utilization and Data Rate Limits	PHI, Fifth Edition, ISBN : 978-0132-	CO1	Pre-	Online Lecture and PPT		
4		Models	multiplexing techniques Data rate limits,	126953 and Data		insem	Online Lecture and PPT		
5		1	Topologies, Noise, types of noise	communication and networking		V	Online Lecture and PPT		
6		\ \	Shannon Hartley Theorem	by Behrouz Forouzan,			Online Lecture and PPT		
7			Nyquist and Shannon Theorem, Bandwidth S/N trade off.	edition 5	51		Online Lecture and PPT		
8		- F	Network Models And addressing - OSI Model				Online Lecture and PPT		
9		IM	TCP/IP Model	r Engin	eer	ing	Online Lecture and PPT		
				$5 \times =$					

.

10 Data Link Layer: Data Link Layer Online 10 Services, Error Detection and PPT	Lecture and
10 Services, Error Detection and PPT	Lecture and
Correction: Introduction	
	T
Linear Block Codes: hamming code, Pre- Online	Lecture and
Hamming Distance, Parity check code. [CO2] Insem PPT	
	T / 1
12 Cyclic Codes: CRC (Polynomials), Chapter Online	Lecture and
Advantages of Cyclic Codes no.10&11 PPT	
Error Detection, Andrew S. Online	Lecture and
Unit - Correction and PPT	
¹³ II Data Link CHECKSUM: One's Complement "Computer	
Control Networks",	
PHI, Fifth Online	Lecture and
14 Internet Checksum Edition, ISBN :	
	Lastura and
15 Framing: fixed-size framing, variable 126053 and	Lecture and
size framing.	
Flow control: flow control protocols.	Lecture and
16 Noiseless channels: simplest protocol, communication PPT	
stop-and-wait and networking	
Noisy channels: by Behrouz Online	Lecture and
stop-and-wait Forouzan, PPT	
17 Automatic Repeat edition 5	
request (ARQ),	
go-back-li AKQ	
Online	Lecture and
18 Selective repeat ARQ, piggybacking.	Lecture and
PP1	.
19 Unit- Random Access Techniques: CSMA	Lecture and
III Insem PPT	

	_	_		and the second se		
20		Multi-Access Mechanism and	CSMA/CD, CSMA/CA	49117		Online Lecture and PPT
21		Ethernet Standards	Controlled Access Techniques: Reservation	Chapter 12 & 13		Online Lecture and PPT
22			Polling, Token Passing	Tanenbaum, CO3		Online Lecture and PPT
23		/	Channelization: FDMA	Networks", PHI Fifth	2	Online Lecture and PPT
24		10	TDMA, CDMA	Edition, ISBN : 978-0132-	3	Online Lecture and PPT
25		10	Ethernet: IEEE Standards- 802.3, 802.4	126953 and Data	10	Online Lecture and PPT
26		A O A	802.5, 802.6	communication and networking by Behrouz		Online Lecture and PPT
27		10	Comparison of Ethernet Standards	edition 5	~:/	Online Lecture and PPT
28		Naturaly Lauren	Network Layer :Network Layer Services, IPv4 Addresses: Static and Dynamic Configuration Classful and Classless Addressing	Chapter 19 &20	/	Online Lecture and PPT
29	Unit- IV	Services and Addressing	Special Addresses, NAT,	Andrew S. Tanenbaum, CO4,	Pre-	Online Lecture and PPT
30			Subnetting	"Computer 5 Networks",	Endsem	Online Lecture and PPT
31		M	Supernetting College O	Edition, ISBN :	ing	Online Lecture and PPT
				5 * =====		

PES's MCOE, Information Technology

Page - 143 -

	_	_			
32			Delivery and Forwarding of IP Packet	978-0132-	Online Lecture and
				126953 and	РРТ
22			Stanstum of Douter	Data	Online Lecture and
33			Structure of Router	communication	PPT
24			IPv4: Datagrams, Fragmentation,	and networking	Online Lecture and
54			Options, Checksum	by Behrouz	PPT
25			IPv6Addressing: Notations, Address	Forouzan,	Online Lecture and
35			Space, Packet Format	edition 5	PPT
26		/ ·	W/ C I I I ST (A)	12 101	Online Lecture and
30		10	Transition from Ipv4 to IPv6	HA VA	PPT
		15	Routing: Metric, Static vs Dynamic		Online Lecture and
37		10	Routing Tables		PPT
			Denting Denters 1 Http://www.Denting	Chapter 22	Outing Lasters and
38			Routing Protocol, Unicast Routing	Andrew S.	Online Lecture and
50		100	and Inter Domain Routing	Tanenbaum,	PPI
		14	and inter Domain Rouding	"Computer	Online Lecture and
39		10	Shortest Path Routing	Networks",	PPT
		1	Flooding Distant Vector Routing Link	PHI, Fifth	Online Lecture and
40		\\	State Routing, Path Vector Routing, Elik	Edition, ISBN :	
		N. 11	Interior Gateway Routing Protocol	978-0132-	111
4.1		Network Layer :		126953 and	Online Lecture and
41	Unit-	Routing	OSPF	Data CO4 Pre-	PPT
10		Protocols		communication Endsem	Online Lecture and
42			EIGRP	and networking	PPT
42	1		D.UD	by Behrouz	Online Lecture and
43			RIP	Forouzan	PPT
4.4	1	L M	ogern College o	edition 5	Online Lecture and
44			DUP		PPT
				5 *	

SE (Semester I) **Online** Lecture 45 Comparisons of all routing protocols and PPT Online Lecture and Transport layer :Transport layer PPT 46 services(Duties) Online Lecture and Chapter 23 & TCP: COTS, TCP header 47 24 PPT Andrew S. Online Lecture and Services, Segments, Connection 48 Tanenbaum. Establishment PPT "Computer Online Lecture and 49 Flow control, Congestion Control Networks", PPT PHI, Fifth Online Lecture and Congestion Control Algorithms 50 Edition, ISBN : PPT Transport layer -CO6 978-0132-Online Lecture and services and 51 Leaky Bucket, Token Bucket and QoS, 126953 and Unitprotocols PPT VI Data Online Lecture and Timers, UDP: CLTS, UDP header, 52 communication Datagram, Services, Applications PPT and networking Online Lecture and 53 Socket: Primitives, TCP by Behrouz PPT Forouzan Online Lecture and 54 edition 5 **UDP** Sockets Pre-PPT Endsem Modern College of Engineering **PES's MCOE, Information Technology** Page - 145 -

<u>Unit-I</u>

Sr.	Question	CO No.	Mark	University
No			S	Year
1	How would you summarize the analog signals and digital	214445.1	6	May 2017
	Signals with the help of waveforms?			
2	List the different signal conversion methods and explain any	214445.1	6	
	one method in brief.	9		
3	Explain the Shanon Heartly theorem with example.	214445.1	6	May 2018
4	What are the functions of data link layer?	214445.1	5	
5	Compare the OSI and TCP/IP reference model.	214445.1	5	Dec 2017
6	What are the functions of transport layer?	214445.1	6	Dec 2016
	/SU/ SUANS	N	011	
7	Show how bandwidth of a signal related to its spectrum?	214445.1	6	May 2014
8	Summarize and illustrate different addressing schemes used in TCP/IP.	214445.1	6	May 2017
9	How would you describe techniques of digital-to-digital conversion?	214445.1	6	
10	How would you describe PCM and DM with the help of diagram.	214445.1	7	May 2017
11	Draw and explain PCM and DM.	214445.1	6	May 2017
12	Explain the following shift keying techniques with suitable	214445.1	7	Dec 2016
	examples:		/	
	ASK	1	1	
	PSK	< s.	1	
13	Summarize and illustrate the Nyquist theorem with example.	214445.1	6	
	Unit II			

Sr.	Question	CO No.	Ma	University
No			rks	Year
1	Explain in detail Go-Back-N and Selective Repeat ARQ System.	214445.2	6	May 2017
2	Explain Error Detection and Correction in Block coding.	214445.2	6	May 2016
3	Write a short note on character oriented framing methods	214445.2	6	May 2016
4	Explain two dimensional parity check.	214445.2	7	May 2016
5	Write a short note on internet checksum. OR What is Checksum? Describe in detail internet Checksum method	214445.2	6 / 7	Dec 2016

	with suitable example.			
6	Discuss the concept of redundancy in error detection and	214445.2	7	Dec 2015
7	correction.	214445.2	7	Dec 2015
/	Explain in detail Stop and wait and Selective Repeat ARQ	214445.2	/	Dec 2015
8	Explain selective repeat ARO for poiseless channels	214445.2	6	May 2014
9	What is Hamming distance? Explain it with an example	214445.2	6	May 2014
,	Explain simple parity check code.	211113.2	0	Way 2014
10	What is CRC ? Explain CRC generator and CRC checker	214445.2	6	May 2014
	with suitable example.			
12	How does a single-bit error differ from a burst error?	214445.2	4	
13	Explain the details about linear block and cyclic block code.	214445.2	6	
14	Elaborate humming distance in detail with suitable example.	214445.2	4	
15	How is the simple parity check related to the two-	214445.2	4	
	dimensional parity check?	1.0	\mathbb{D}^{+}	
16	What kind of arithmetic is used to add data items in	214445.2	4	1
	checksum calculation? And explain it.	\		
17	Explain Go-back-N automatic repeat request protocol.	214445.2	6	May 15
18	Explain the framing and its need.	214445.2	4	
19	Compare and contrast byte-oriented and bit-	214445.2	6	- 1
	oriented		1 17	7/
	protocols. Which category has been popular in the past			11
20	(explain the reason)? Which category is popular now.	214445.2	4	L
20	Compare and contrast byte-stuffing and bit-stuffing. Which	214445.2	4	1
	technique is used in bit oriented protocols? which		- N.	/
21	Compare and contrast flow control and error control	214445.2	1	
$\frac{21}{22}$	What are the two protocols we discussed for poiseless	214445.2	4	
	channels?	214443.2		
23	Explain the three protocols used in noisy channels	214445.2	6	
$\frac{23}{24}$	Compare and contrast the Go-Back-NARO Protocol with	214445.2	4	
	Selective-Repeat ARO.	11110.2		
25	Elaborate piggybacking and its usefulness in detail.	214445.2	6	
26	Generate the CRC code for the message 1101010101.Given	014445.0	7	Dec 15
_	Generator polynomial $g(x)=x^4+x^2+1$.	214445.2		

					11 12			
1111	Aneli	1.00	unes	le r	0.1	- 119	meet	

Sr.	Question	CO No.	Ma	University
No			rks	Year
1	Compare FDMA, TDMA and CDMA.	214445.3	6	May 2016
2	Explain CSMA and CSMA/CD. Also comment on the	214445.3	6	May 2017
	efficiency of each.		0	

* P<u>uhit:m</u>-5 * ------

3	Write a short note on FDM and TDM.	214445.3	6	Dec 2016
4	Explain FDM and TDM multiplication Techniques.	214445.3	6	May 16
5	Discuss CSMA/CA random access technique. How collision avoidance is achieved in this technique?	214445.3	6	Dec 2016
6	Explain FDMA, TDMA and CDMA in detail.	214445.3	6	Dec 2016
12	Write a note on CSMA/CD.	214445.3	6	Dec 2015
13	Write a note on CSMA.	214445.3	6	Dec 2015
14	Discuss CSMA/CD random access technique. How collision detection is achieved in this technique?	214445.3	6	May 2014
15	Explain CSMA and CSMA/CD random access technique. How collision avoidance is achieved in this technique?	214445.3	6	Dec 14
16	A CSMA/CD bus spans a distance of 1.5 km. if the data rate is 5 mbps what is min frame size?	214445.3	4	
17	Compute a max channel utilization for a MAN which uses CSMA mechanism and has length of 50 km and operates at 50 mbps with frame length of 2000 bits.	214445.3	4	1
18	Elaborate random access and list and explain three protocols in this category.	214445.3	6	2/
19	Define controlled access and list and explain three protocols in this category.	214445.3	6	2
20	Define channelization and list and explain three protocols in this category.	214445.3	6	77
21	Explain why collision is an issue in a random access protocol but not in controlled access or channelizing protocols.	214445.3	6	2/
22	Compare and contrast a random access protocol with a controlled access protocol.	214445.3	4	7
23	Compare and contrast a random access protocol with a channelizing protocol.	214445.3	4	r
24	Compare and contrast a controlled access protocol with a channelizing protocol.	214445.3	6	
25	Do we need a multiple access protocol when we use the local loop of the telephone company to access the Internet? Why?	214445.3	4	_
26	Do we need a multiple access protocol when we use one CATV channel to access the Internet? Why?	214445.3	4	a
27	In a CDMA-1 CD network with a data rate of 10 Mbps, the minimum frame size is found to be 512 bits for the correct operation of the collision detection process. What should be the minimum frame size if we increase the data rate to 100 Mbps? To 1 Gbps? To 10 Gbps?	214445.3	6	5
28	In a CDMA-1 CD network with a data rate of 10 Mbps, the maximum distance between any station pair is found to be 2500 m for the correct operation of the collision detection	214445.3	6	

	process. What should be the maximum distance if we			
	increase the data rate to 100 Mbps? To 1 Gbps? To 10 Gbps?			
29	How is the preamble field different from the SFD field?	214445.3	4	
30	Explain the frame format for IEEE 802.3	214445.3	4	
31	Explain types of standard Ethernet and Gigabit Ethernet.	214445.3	6	Dec 2015
32	Compare the data rates for Standard Ethernet, Fast Ethernet,	214445.3	6	
	Gigabit Ethernet, and Ten-Gigabit Ethernet.	and the second se		
33	What are the common Standard Ethernet implementations?	214445.3	6	
	Explain it	. ///		
34	What are the common Fast Ethernet implementations?	214445.3	6	
	Explain it in detail.			
35	Explain in detail common Gigabit Ethernet	214445.3	6	
	implementations?	Nº0	\sim	
36	What are the common Ten-Gigabit Ethernet	214445.3	6	
	implementations? Explain it in detail.	1	\sim	
37	What is difference between IEEE 802.3, 802.4, 802.5	214445.3	6	3.
38	Explain the frame format of IEEE 802.5.	214445.3	6	1
39	Explain the frame format of IEEE 802.4.	214445.3	6	<u></u>
40	Discuss Fast Ethernet technology in brief. State its	214445.3	6	May 2017
	specification.	. C	1.7	
			11	
	Unit IV	<u></u>		
	In my all	2	11	
	- 1 FBC 1. (The FBC / 77 / 1 here 7	and the second se		

Sr. No	Question	CO No.	Ma University rks Year
1	Explain the operation of NAT with suitable example.	214445.4,5	6
2	Explain the IPV4 header format with suitable diagram.	214445.4,5	6
3	Explain the delivery and forwarding of IP packet in brief	214445.4,5	6
4	A company needs 6 subnets to its six departments. The company is granted site address 210.80.60.0. Design the subnets.	214445.4,5	6
5	What is addressing techniques? Explain it.	214445.4,5	4
6	What is fragmentation? Explain how it is supported to in IPV4 and IPV6?	214445.4,5	6
7	Explain the details header format of IPv6.	214445.4,5	4
8	Compare the classful IP address and classless IP address.	214445.4,5	6
9	Compare IPV4 and IPV6.	214445.4,5	6
10	Explain the transition of IPV4 to IPV6	214445.4,5	6
11	Explain the supernetting with suitable example.	214445.4,5	6

12	Divide the network 192.168.1.0 into 8 equal subnets. 214445.4,5	6	
	calculate the host address in each subnet and also find out		
	first valid host and last valid host of 5 th subnet.		

	<u>Unit-V</u>			
Sr. No	Question	CO No.	Mar ks	University Year
1	Compare static routing and dynamic routing.	214445.4	6	
2	What is routing? State different types of routing .Explain two interior gateway routing protocols.	214445.4	6	
3	Compare between distance vector routing protocols and	214445.4	6	
	link state routing protocols.	10	N	
4	Explain OSPF with its message format	214445.4	6	
5	Explain the structure of router in brief.	214445.4	6	
6	Write a short note on	214445.4	6	1
	I.RIP ATTRAS	2	5	1
	2.EIGRP	2	15	1
	3.OSPF		1 11	
	4.BGP	<u> </u>	1	1
7	What is BGP? Explain the operations of BGP with suitable example.	214445.4	6	1
8	Compare and contrast between RIP and OSPF	214445.4	6	1
9	Compare between distance vector routing protocols and link state routing protocols	214445.4	6	1
L		/	- /	
	Unit VI	/	/	

<u>Unit VI</u>

		/		
	<u>Unit VI</u>	/ .	1	
Sr.	Question	CO No.	Mar	University
No	N 0 6	1	ks	Year
1	Explain timers used with TCP.	214445.6	6	
2	Explain Leaky & Token bucket algorithm.	214445.6	6	
3	Write a short note of Quality of Service Parameter in	214445.6	6	
	Transport layer. The College of En	aineer	ina	
4	Explain various transport layer services	214445.6	6	
5	Explain how TCP provides flow control?	214445.6	6	
6	Explain the duties of transport layer and differentiate	214445.6	6	
	between connection oriented and connectionless service.			
7	Write a short note on UDP.	214445.6	6	

8	Explain the all fields of TCP header.	214445.6	6	
9	Explain three way handshake algorithms for TCP	214445.6	6	
	connection establishment.			
10	What is silly window syndrome ? how to overcome it ?	214445.6	6	
11	Explain the socket primitives in TCP protocol.	214445.6	6	
12	Explain the socket primitives in UDP protocol	214445.6	6	

HOME ASSIGNMENTS

SE (Semester I)

<u>Unit I</u>

Sr.	Question	CO No.	Mark	University
No			S	Year
1	How would you summarize the analog signals and digital	214445.1	6	May 2017
	Signals with the help of waveforms?			
2	List the different signal conversion methods and explain any	214445.1	6	
	one method in brief.	1		
3	Explain the Shanon Heartly theorem with example.	214445.1	6	May 2018
4	What are the functions of data link layer?	214445.1	5	
5	Compare the OSI and TCP/IP reference model.	214445.1	5	Dec 2017
	Unit-II	1	10	

Unit-II

Sr.	Question	CO No.	Mark	University
No	10-1 2006	~	S	Year
1	Explain in detail Stop and Wait and Selective Repeat ARQ	214445.2	7	Dec 2015
	System.			
2	Write a short note on internet checksum. OR What	214445.2	6/7	Dec 2016
	is Checksum? Describe in detail internet Checksum		_	- 1
	method with suitable example.		1 000	
3	What is CRC ? Explain CRC generator and CRC checker	214445.2	6	May 2014
	with suitable example.		- The second	1
4	Write a short note on character oriented framing methods	214445.2	6	May 2016
~		014445.0	6	M 2016
5	Explain Error Detection and Correction in Block coding.	214445.2	6	May 2016
	Unit-III			

Sr.	Question	CO No.	Mark	University
No		<	s	Year
1	Explain CSMA and CSMA/CD. Also comment on the	214445.3	6	May 2017
	efficiency of each.	1	0	
2	Discuss CSMA/CD random access technique. How collision	214445.3	6	May 2014
	detection is achieved in this technique?		0	
3	Elaborate random access and list and explain three protocols	214445.3	6	
	in this category.	in the second second	i se	
4	Define controlled access and list and explain three protocols	214445.3	6	
	in this category.		100	
5	What is difference between IEEE 802.3, 802.4, 802.5	214445.3	6	

Unit: IV

Sr.	Question	CO No.	Mark	University
No			S	Year
1	Explain the operation of NAT with suitable example.	214445.4,	6	
		5		
2	Explain the IPV4 header format with suitable diagram.	214445.4,	6	
	TTTTT I	5		
3	A company needs 6 subnets to its six departments. The	214445.4,	6	
	company is granted site address 210.80.60.0. Design the	5		
	subnets.	11		
4	Compare the classful IP address and classless IP address.	214445.4,	4	
	A	5		
5	Compare IPV4 and IPV6.	214445.4,	6	
	161	5	N	

<u>Unit-V</u>

	Unit-V	1	2
Sr. No	Question	CO No.	Mark University
1	Compare static routing and dynamic routing.	214445.4	6 1 Ca
2	What is routing? State different types of routing .Explain two interior gateway routing protocols.	214445.4	6
3	Compare between distance vector routing protocols and link state routing protocols.	214445.4	6
4	Explain OSPF with its message format	214445.4	6
5	Explain the structure of router in brief.	214445.4	6
	Unit-VI		

Sr.	Question	CO No.	Mark	University
No		1 .	S	Year
1	Explain various transport layer services	214445.6	6	
2	Explain how TCP provides flow control?	214445.6	6	
3	Explain the duties of transport layer and differentiate between	214445.6	6	
	connection oriented and connectionless service.			
4	Write a short note on UDP.	214445.6	6	
5	Explain the all fields of TCP header.	214445.6	6	

ADDITIONAL RESOURCES

https://searchnetworking.techtarget.com/definition/Network-layer https://www.quora.com/What-protocols-are-used-in-a-network-layer https://www.ibm.com/support/knowledgecenter/.../com...znetwork/znetwork_21,html https://www.youtube.com/watch?v=3QWrq5gN8VY&t=197s https://www.youtube.com/watch?v=vru2wLvBS8s https://www.youtube.com/watch?v=rs39FWDhzDs https://www.youtube.com/watch?v=qIEHUUt2Wfc

U

Modern College of Engineering

= * Pune - 5 * ===

PES's MCOE, Information Technology

大

<u>SYLLABUS</u>

214442: Logic Design & Computer Organization Laboratory

T	eaching Scheme: Credits Examination Scheme:				
Le	ectures:2 Hours/Week 01 PR: 25Marks				
	GROUP A				
1.	Design and implement 4-bit BCD to Excess-3code				
2.	Design and implement 1 digit BCD adderusingIC7483				
3.	Design and implement following using multiplexer IC 74153 1) full adder 2) Any three variable function (cascade method)				
4.	4. Design and implement full Subtractor using decoder IC74138				
	GROUP B				
1.	Design and implement 3 bit Up and 3 bit Down Asynchronous Counters using master				
	slave JK flip- flop IC7476				
2.	Design and implement 3 bit Up and 3 bit Down Synchronous Counters using master				
	slave JK flip- flop IC7476				
3.	Design and implement Modulo 'N' counter using IC7490. (N= 100max)				
	GROUP C				
	Any <u>two</u> of following , using virtual lab simulator				
1.	Design& simulate single bit RAM cell <u>OR 4</u> address*2bit memory using 8 single bit RAM cells.				
2.	Design& simulate single bit ALU with four functions(AND, OR, XOR, ADD).				
Design& simulation of single instruction CPU.					
	/ Vne - V				
Poference Peoke					
Keterence Books:					

- R.P. Jain, "Modern Digital Electronics", 3rd Edition, Tata McGraw-Hill, ISBN:0-07-049492-4.
- Virtual Lab simulator Link <u>http://vlabs.iitkgp.ac.in/coa/</u>

COURSE OUTCOMES

CO No.	Course Outcome	Mapping With Unit/ Assignment	Assessment Technique	Blooms Taxonomy Category
214442.1	Use logic function representation	00,	42	
	for simplification with K-Maps and	LA 1,2,3,4	210	Apply
	design Combinational logic		~~~~	N
	circuits using SSI & MSI chips.	22	10	2
214442.2	Design Sequential Logic circuits:	AH2	Mock Practical	5
1.2	MOD counters using synchronous	LA 5,6,7	Test	Understand
10	counters.	1822		101
214442.2	Understand the basics of simulator	1203	~~~	
214442.3		- STR	2	
	tool & to simulate basic blocks	LA 8,9		Understand
10	such as ALU & memory.	0	7 1	1-21
	X Pun	e -	5 *	

Modern College of Engineering

PREREQUISITES

Sr. No.	Assignment Number	Prerequisite Topic Name	
1.	1	Code Converters, K maps, Combinational logic circuits , ,Basic IC and gates knowledge	
2.	2	Adder, HA& Full Adder, IC 7483, Basic IC and gates knowledge	
3.	(3)	Basic IC and gates knowledge, Full adder ,Multiplexer ,Demultiplexer	
4.		Basic IC and gates knowledge, Full Subtractor, Decoder IC, Counters, JK Flip flop	
5.	5	Basic IC and gates knowledge, 3 bit Up and 3 bit Down Asynchronous Counters using master slave JK flip- flop IC7476	
6.	e e	Basic IC and gates knowledge, 3 bit Up and 3 bit Down Synchronous Counters using master slave JK flip- flop IC7476	
7.	7	Basic IC and gates knowledge, MOD counters	
8	8 *	single bit RAM cell <u>OR</u> 4 address*2bit memory using 8 single bit RAM cells.	
9	9	single bit ALU with four functions	

Modern College of Engineering

TEACHING PLAN

Practical Teaching Plan Short

Academic Year:-2021-22

Semester:-I

<u>w. e. f. :-5-7-2021</u>

Division: A/B

Class :-SE

Subject :- Logic Design& Computer Organization Lab Subject Code :- 214446

Faculty Incharge :-Mrs.Tanmayee Kute & Poonam Rakibe <u>No.of Lectures/ eeks</u>:3

	Practical Plan					
Sr. No.	Assig nmen t No.	Assignment Title	Start week	End week		
1.	1	Design and implement 4-bit BCD to Excess-3 code	August3 nd week	August 4 th week		
2.	2	Design and implement 1 digit BCD adder using IC 7483	August 4 th week	August 5 th week		
3.	3	Design and implement following using multiplexer IC 74153 1) full adder 2) Any three variable function (cascade method)	Septembe r 1 st week	Septemb er 2 nd week		
4.	4	Design and implement full Subtractor using decoder IC74138	September 3 rd week	September 4 th week		
5.	5	Design and implement 3 bit Up and 3 bit Down Asynchronous Counters using master slave JK flip- flop IC7476	September 5 th week	October 1 st week		
6.	6	Design and implement 3 bit Up and 3 bit Down Synchronous Counters using master slave JK flip- flop IC 7476	October 2 nd week	October 3 rd week		
7.	7	Design and implement Modulo 'N' counter using IC7490. (N= 100max)	October 4 th week	October 5 th week		
8.	8	Design& simulate single bit RAM cell <u>OR</u> 4 address*2bit memory using 8 single bit RAM cells.	November 1 st week	November 2 nd week		
9.	9	Design and simulate single bit ALU with four functions (AND, OR, XOR, ADD).	November 3 rd week	November 4 th week		

ORAL QUESTION BANK

- 1. Why NAND & NOR gates are called universal gates?
- 2. Realize the EX OR gates using minimum number of NAND gates.
- 3. Give the truth table for EX-NOR and realize using NAND gates?
- 4. What are the different methods to obtain minimal expression?
- 5. What is a Min term and Max term.
- 6. State the difference between SOP and POS.
- 7. What is meant by canonical representation?
- 8. What is K-map? Why is it used?
- 9. What are universal gates?
- 10. What is a half adder?
- 11. What is a full adder?
- 12. What are the applications of adders?
- 13. What is a half Subtractor?
- 14. What is a full Subtractor?
- 15. What are the applications of sub tractors?
- 16. Obtain the minimal expression for above circuits.
- 17. Realize a full adder using two half adders
- 18. Realize a full Subtractor using two half Subtractor.
- 19. What is the internal structure of 7483 IC?
- 20. What do you mean by code conversion?
- 21. What are the applications of code conversion?
- 22. How do you realize a Subtractor using full adder?
- 23. What is a ripple Adder? What are its disadvantages?
- 24. What are code converters?

PES's MCOE, Information Technology

ineerina

- 25. What is the necessity of code conversions?
- 26. What is gray code?
- 27. Realize the Boolean expressions for
- a) Binary to gray code conversion
- b) Gray to binary code conversion
- 28. What is a multiplexer?
- 29. What is a de-multiplexer?
- 30. What are the applications of multiplexer and de-multiplexer?
- 31. Derive the Boolean expression for multiplexer and de-multiplexer.
- 32. How do you realize a given function using multiplexer
- 33. What is the difference between multiplexer & demultiplexer?
- 34. In 2n to 1 multiplexer how many selection lines are there?
- 35. How to get higher order multiplexers?
- 36. Implement an 8:1 mux using 4:1 muxes?
- 37. What are the applications of decoder?
- 38. What is the difference between decoder & encoder?
- 39. For n- 2n decoder how many i/p lines & how many o/p lines?
- 40. What are the different codes & their applications?
- 41. What are code converters?
- 42. Using 3:8 decoder and associated logic, implement a full adder?
- 43. Implement a full Subtractor using IC 74138?
- 44. What is the difference between decoder and de-mux?
- 45. What is the difference between Flip-Flop & latch?
- 46. Give examples for synchronous & asynchronous inputs?
- 47. What are the applications of different Flip-Flops?
- 48. What is the advantage of Edge triggering over level triggering?

- 49. What is the relation between propagation delay & clock frequency of flip-flop?
- 50. What is race around in flip-flop & how to overcome it?
- 51. Convert the J K Flip-Flop into D flip-flop and T flip-flop?
- 52. List the functions of asynchronous inputs?
- 53. What is the necessity for sequence generation?
- 54. What are PISO, SIPO, and SISO with respect to shift register?
- 55. Differentiate between serial data & parallel data
- 56. What is the significance of Mode control bit?
- 57. What is a ring counter?
- 58. What is a Johnson counter?
- 59. What are the different types of memory?
- 60. What is RAM?
- 61. What is CPU?
- 62. Name different blocks of CPU?
- 63. What is cache memory?
- 64. What is I/O?
- 65. What is ALU?
- 66. What are the different registers in CPU?
- 67. Draw instruction format?
- 68. What is SRAM, DRAM and ROM?
- 69. What is ISR?
- 70. What is difference between interrupt and exception?

Pune - 5 🖈

1. Searching and Sorting

Consider a student database of SEIT class (at least 15 records). Database contains different fields of every student like Roll No, Name and SGPA.(array of structure) a) Design a roll call list, arrange list of students according to roll numbers in ascending order (Use Bubble Sort) b) Arrange list of students alphabetically. (Use Insertion sort) c) Arrange list of students to find out first ten toppers from a class. (Use Quick sort) d) Search students according to SGPA. If more than one student has the same SGPA, then print a list of all students having the same SGPA. e) Search a particular student according to name using binary search without recursion. (all the student records having the presence of search key should be displayed) (Note: Implement either Bubble sort or Insertion Sort.)

2. Stack

Implement stack as an abstract data type using singly linked list and use this ADT for conversion of infix expression to postfix, prefix and evaluation of postfix and prefix expression.

3. Circular Queue

Implement Circular Queue using Array. Perform following operations on it.

a) Insertion (Enqueue)

b) Deletion (Dequeue)

c) Display

(Note: Handle queue full condition by considering a fixed size of a queue.)

4. Expression Tree

Construct an Expression Tree from postfix and prefix expression. Perform recursive and nonrecursive In-order, pre-order and post-order traversals

38-

Pune - 5 *

<u>5. Binary Search Tree</u>

Implement binary search tree and perform following operations:

a) Insert (Handle insertion of duplicate entry)

b) Delete

c) Search

- d) Display tree (Traversal)
- e) Display Depth of tree
- f) Display Mirror image

PES's MCOE, Information Technology

Engineering

g) Create a copy

h) Display all parent nodes with their child nodes

i) Display leaf nodes

j) Display tree level wise

(Note: Insertion, Deletion, Search and Traversal are compulsory, from rest of operations, perform Any three)

6. Threaded Binary Tree

Implement In-order Threaded Binary Tree and traverse it in In-order and Pre-order.

7. Graph: Minimum Spanning Tree

Represent a graph of your college campus using adjacency list /adjacency matrix. Nodes should represent the various departments/institutes and links should represent the distance between them. Find minimum spanning tree

a) Using Kruskal's algorithm.

b) Using Prim's algorithm.

8. Graph: Shortest Path Algorithm

Represent a graph of the city using adjacency matrix /adjacency list. Nodes should represent the various landmarks and links should represent the distance between them. Find the shortest path using Dijkstra's algorithm from single source to all destinations.

<u>9. Heap Sort</u>

Implement Heap sort to sort a given set of values using max or min heap.

MOUELLI COILE

10. FILE Handling

Department maintains student's database. The file contains roll number, name, division and address. Write a program to create a sequential file to store and maintain student data. It should allow the user to add, delete information of student. Display information of a particular student. If the record of the student does not exist an appropriate message is displayed. If a student record is found it should display the student details.

* Pune - 5 * ====

Course Outcomes

CO No.	Course Outcome	Mapping With Unit/ Assignment	Assessment Technique	Bloom's Taxonomy Category
C214447.1	Analyze algorithms and to determine algorithm correctness and time efficiency class) Ath C	AN	L : IV Analyze
C214447.2	Implement abstract data type (ADT) and data structures for given application.	1 TO 9	Continuous	L : III Apply
C214447.3	Design algorithms based on techniques like brute -force, divide and conquer, greedy, etc.	1 TO 8, 10	Assessment, Mock Practical Exam	L : III Apply
C214447.4	Solve problems using algorithmic design techniques and data structures	ALL	5	L : III Apply
C214447.5	Analyze algorithms with respect to time and space complexity.	ALL	2	L : IV Analyze
	X	~~~~		

'un

Teaching Plan

Sr. No.	Title of Assignment	Date of Implementation	Date of Evaluation
1	Sorting Algorithm on student Database	August 4th Week	September 1st Week
2	Stack as an ADT for expression conversion	September 1st Week	September 2nd Week
3	Circular queue using array	September 2nd Week	September 3rd Week
4	Construction and traversal of an Expression Tree from postfix and prefix expression	September 3rd Week	September 4th Week
5	Binary Search Tree	September 4th Week	September 5th Week
6	Implemention of In-order Threaded Binary Tree and its traversal	September 5th Week	October 1st Week
7	Using Kruskal's and Prim's algorithm to find minimum spanning tree	October 1st Week	October 2nd Week
8	Shortest path using Dijkstra's algorithm from single source to all destination	October 2nd Week	October 3rd Week
9	Implementation of Heap sort to sort given set of values using max or min heap	October 3rd Week	October 4th Week
10	Creation of a sequential file to store and maintain student data	October 4th Week	November 2nd Week

SE (Semester I)

ORAL QUESTIONS

1. What is data structure?

2. In what areas do data structures are applied?

3. Give different examples of data structures.[#]

4. Explain categories of data structures.

5. What is primitive and non-primitive data structures?

6. Give examples of primitive and non-primitive data structures.

7. Differentiate between primitive and non-primitive data structures.

8. What is static and dynamic data structures?

9. Differentiate between static and dynamic data structures.

10. Give examples of static and dynamic data structures.

11. What is persistent and ephemeral data structures?

12. Differentiate between persistent and ephemeral data structures?

13. Give examples of persistent and ephemeral data structures.

14. What is linear data structure?

15. What is non linear data structure?

16. Differentiate between linear and non-linear data structures

17. Give examples of linear and non-linear data structures

18. What is sequential data structure?

19. What is non-sequential data structure?

20. Give an example of sequential data structure and non-sequential data structure

21. Differentiate between sequential and non-sequential data structures.

22. What is an ADT?

23. Explain any data structure as an ADT.

24. What is array?

25. What is dimension of array data structure?

26. What are applications of 2D and 3D arrays?

27. How to calculate address calculated in arrays?

28. What is row and column major representation of arrays?

29. How do you reference all the elements in a one-dimension array?

- 30. What is linked organization?
- 31. What different types of linked lists?
- 32. What is SLL?
- 33. What is DLL?
- 34. What is CLL?

35. Explain all operations that we can perform on linked lists.

- 36. What are the applications of SLL, DLL and CLL?
- 37. Can Linked list be implemented by arrays? Support your and with explanation.

38. Explain file structure.

39. Differentiate between file and structure storage structure.

40. What is time complexity?

- 41. What is space complexity?
- 42. What are characteristics of algorithms?

43. What is frequency count?

- 44. Why frequency count is useful?
- 45. Why to consider time and space complexity while developing algorithms?

46. Why searching and sorting is included in data structures?

47. What is internal and external sorting?

48. What is sort stability?

- 49. State different types of searching techniques.
- 50. State different types of sorting techniques.
- 51. Why name BUBBLE is given to BUBBLE SORT?
- 52. Why name SELECTION is given to SELECTION SORT?
- 53. Why name INSERTION is given to INSERTION SORT?

54. Why name LINEAR/SEQUENTIAL is given to LINEAR/SEQUENTIAL SEARCH?

- 55. Why name BINARY is given to BINARY SEARCH?
- 56. State the Best, Average and Worst time complexity of
 - a. Buuble Sort
 - b. Selection Sort
 - c. Insertion Sort
 - d. Shell Sort

- e. Merge Sort
- f. Linear Search
- g. Binary Dearch
- 57. When is a binary search best applied?
- 58. What is LIFO?
- 59. What is stack?
- 60. What is queue?
- 61. What is FIFO?
- 62. What are applications of stack and queue?
- 63. Can we implement stack/queue with linked organised data structure?
- 64. Which data structure works with both ends?
- 65. What is use of TOP in stack data structure?
- 66. What is use of FRONT and REAR in queue data structure
- 67. What is circular queue?
- 68. What are advantages of circular queue data structure over linear queue data structure?
- 69. What are disadvantages of linear queue data structure?
- 70. What is recursion?
- 71. Give any example where recursion can be used.
- 72. Explain the concept of implicit and explicit stack.
- 73. Convert given infix expression to postfix and prefix.
- 74. Evaluate given prefix and postfix expressions.
- 75. Explain the concept of double ended queue.
- 76. Explain priority queue.
- 77. Give applications of priority queue.
- 78. What is tree data structure?
- 79. What are application of tree data structure? **COTENCINEERING**
- 80. What are types of tree data structure?
- 81. What is binary tree?
- 82. Why the name BINARY is given to BINARY TREE?
- 83. What is general tree?
- 84. Differentiate general tree and binary tree.

85. Explain structure of binary tree.

86. What is complete binary tree?

87. What is a full binary tree?

88. What is a skewed binary tree?

89. What types of skewed binary tree?

90. Draw

- a. General Tree
- b. Binary tree
- c. Complete Binary Tree
- d. Full Binary Tree
- e. Skewed Binary Tree

91. Draw and label different parts of binary tree

a. Root

- b. Leaf
- c. node
- d. Parent node
- e. Branch
- f. Path
- g. Intermediate node
- 92. What is the traversal of a Binary Tree?
- 93. What are different types of tree traversals?

94. What is depth first search?

- 95. What is breadth first search?
- 96. What is pre-order traversal?
- 97. What is in-order traversal?

98. What is post-order traversal? Ollege of Engineering

- 99. Which data structure is useful in depth first search traversal?
- 100. Which data structure is useful in breadth first search traversal?
- 101. Draw a binary tree and traverse
 - a. In pre-order
 - b. In post-order

- c. In in-order
- d. Level wise.

102. Draw a binary tree and explain the logic to

- a. Insert a new node in tree
- b. Search any particular node
- c. Find all leaf nodes
- d. Find an intermediate node having only left child
- e. Find an intermediate node having only right child
- f. Find an intermediate node having both children
- 103. Draw BST for given data set and traverse it in all orders.
- 104. Draw BST for given data set and explain the logic to
 - a. Insert a new node in tree
 - b. Search any particular node
 - c. Delete a node with all cases
- 105. Explain the logic of recursive and non-recursive algorithm for
 - a. pre-order
 - b. post-order
 - c. In-order
- 106. What is TBT?
- 107. Explain the concept of TBT.
- 108. Explain the pre-order traversal of in-ordered TBT.
- 109. Explain the in-order traversal of in-ordered TBT.
- 110. List out the applications of tree data structure.
- 111. What is expression tree?
- 112. In expression tree, what are the leaf nodes?
- 113. In expression tree, what are the intermediate nodes?
- 114. Draw expression tree from given prefix/postfix expression.
- 115. Which data structure helps you to construct expression tree.
- 116. What is graph?
- 117. Draw any graph and name its all terminologies.
- 118. What is directed graph?
- 119. What is undirected graph?

- 120. Represent any given graph using
 - a. Adjacency matrix
 - b. Adjacency lists
- 121. How can we traverse a graph? What different methods to traverse a graph?
- 122. What is BFS and DFS?
- 123. Which data structure helps to traverse a graph in BFS?
- 124. Which data structure helps to traverse a graph in DFS?
- 125. Take any graph for reference and traverse it in
 - a. BFS
 - b. DFS
- 126. What is the difference between DFS and BFS.
- 127. What is Spanning Tree?
- 128. What is Minimum Spanning Tree?
- 129. What are methods or algorithms used to find MST?
- 130. What is PRIM's Algorithm?
- 131. What is KRUSKAL's Algorithm?
- 132. Explain the logic of PRIM's Algorithm.
- 133. Explain the logic of KRUSKAL's algorithm.
- 134. Find out MST for any given graph by applying PRIM's and KRUSKAL's algorithm.
- 135. Differentiate between PRIM's and KRUSKAL's algorithm.
- 136. What is shortest path algorithm?
- 137. Explain applications of Shortest Path Algorithm.
- 138. Explain the logic of Dijkstra's Shortest Path Algorithm.
- 139. For any graph, apply the logic of Dijkstra's Shortest Path Algorithm to find out shortest path.
- 140. Which algorithm is useful to findout shortest path from one source to all destinations?
- 141. Which algorithm is useful to findout shortest path from all sources to all destinations?
- 142. What is topological sorting?
- 143. Explain the concept of topological sorting.
- 144. Where topological sorting concept is useful?
- 145. Draw a graph and apply topological sorting on the same graph.

- 146. What is symbol table?
- 147. What is use of symbol table?
- 148. Where the symbol table can be used?
- 149. What is the syntax of symbol table?
- 150. What is OBST?
- 151. What is frequency count in optimal binary search tree?
- 152. Draw any BST and make it optimal by applying formula to find out OBST.
- 153. What is an AVL Tree?
- 154. What are rotations?
- 155. What different types of rotations that can be applied on BST to find out AVL Tree?
- 156. What is single rotation?
- 157. What is double rotation?
- 158. Explain the situation in which single rotation is sufficient?
- 159. Explain the situation in which double rotation can be applied?
- 160. What is Left Rotation (LL)?
- 161. In which situation, Left Rotation can be applied?
- 162. What is Right Rotation (RR)?
- 163. In which situation, Right Rotation can be applied?
- 164. What is Left Right Rotation (LR)?
- 165. In which situation, LeftRight Rotation can be applied?
- 166. What is Right Left Rotation (RL)?
- 167. In which situation, Right Left Rotation can be applied?
- 168. State true or false "Every AVL Tree is a BST but not every BST is AVL tree"
- 169. What is Heap?
- 170. What is Heap Data Structure?
- 171. What is min heap? College of Engineering
- 172. What is max heap?
- 173. Construct complete binary tree from given values.
- 174. What is heapify?
- 175. Why to apply heapify on complete binary tree?
- 176. What are the steps used to heapify the complete binary tree?

- 177. What are the applications of heap?
- 178. What is hashing?
- 179. What are hashing techniques?
- 180. Explain characteristics of good hash function.
- 181. Explain different types of hash functions that can be used for hashing.
- 182. Explain different key to address transformation techniques
- 183. Explain the term synonyms.
- 184. Explain the term collision.
- 185. What is collision resolution.
- 186. What different techniques used to resolve the collision.

187. What is linear probing?

- 188. What is quadratic probing?
- 189. What different techniques used in linear probing?
- 190. Explain the concept of rehashing.
- 191. What is linear probing without replacement?
- 192. What is linear probing with replacement?
- 193. Explain linear probing without replacement with any example.
- 194. Explain linear probing with replacement with any example.
- 195. Explain quadratic probing with example.
- 196. State whether the given statement is true or false? "While using modulo-division method, division by prime number near to size of hash table is more efficient."
- 197. Why to use prime number near to size of hash table while using modulo-division method?
- 198. For given set of values, construct hash table using linear probing without replacement.
- 199. For given set of values, construct hash table using linear probing with replacement.
- 200. For given set of values, construct hash table using quadratic probing.

Modern College of Engineering

SYLLABUS

Teaching Scheme Practical : 4 Hours/Week	Credits: 02	Examination Scheme: Term Work · 25 Marks				
Tractical . 4 Hours/ Week		Oral: 25 Marks				
Prerequisites:						
1. Student should have knowled	dge of programming language.					
Course Objectives :	3/1	1 1.7				
1. Apply concepts of object-ori	ented paradigm.					
2. Design and implement mode	els for real life problems by using	g object-oriented programming.				
3. Develop object-oriented prog	gramming skills.					
Guidelines for Instructor's M	lanual	21/20				
The instructor's manual is to be	developed as a hands-on resource	ce and reference. The instructor's				
manual need to include prolog	gue (about University/program/	institute/ department/foreword/				
preface etc.), University syl	labus, conduction & Assessr	nent guidelines, topics under				
consideration concept, objective	es, outcomes, set of typical appli	cations/assignments/ guidelines,				
and references.		\U:\				
Guidelines for Student's Lab	Journal	Se a VOV				
1. The laboratory assignments a	are to be submitted by student in	the form of journal.				
2. Journal consists of prologue,	, Certificate, table of contents, a	nd handwritten write-up of each				
assignment (Title, Objective	s, Problem Statement, Outco	omes, sontware & Hardware				
fequirements, Date of Complet	the flowshout test same actual	a assessor's sign, Theory-OOP				
reature/Concept in brief, algorithm, flowchart, test cases, conclusion/analysis.						
3. Program codes with sample output of all performed assignments are to be submitted as						
nardcopy.						
4. As a conscious effort and little contribution towards Green II and environment awareness,						
attaching printed papers as part of write-ups and program listing to journal may be avoided.						
6. Eor reference one or two jour	rnals may be maintained by fab	m-charge is highly encouraged.				
Cuidelines for Lab /TW Asso	ssmont	ogram prints at Laboratory.				
1 Continuous assassment of 1	Guidelines for Lab / I w Assessment					
assignments performance of stu	1. Continuous assessment of laboratory work is done based on overall performance and lab					
2 Each lab assignment assessment will assign grade/marks based on parameters with						
appropriate weightage						
3. Suggested parameters for overall assessment as well as each lab assignment assessment						
include- timely completion, performance, innovation, efficient codes, punctuality and neatness						
Modern College of Engineering						

SUGGESTED LIST OF LABORATORY ASSIGNMENTS

Assignment No.1:

Classes and object: Design a class 'Complex 'with data members for real and imaginary part. Provide default and Parameterized constructors. Write a program to perform arithmetic operations of two complex numbers.

Assignment No.2:

Polymorphism: Identify commonalities and differences between Publication, Book and Magazine classes. Title, Price, Copies are common instance variables and saleCopy is common method. The differences are, Bookclass has author and orderCopies(). Magazine Class has methods orderQty, Current issue, receiveissue().Write a program to find how many copies of the given books are ordered and display total sale of publication.

Assignment No.3:

Inheritance: Design and develop inheritance for a given case study, identify objects and relationships and implement inheritance wherever applicable. Employee class hasEmp_name, Emp_id, Address, Mail_id, and Mobile_noas members. Inherit the classes: Programmer, Team Lead, Assistant Project Manager and Project Manager from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.

Assignment No.4:

Dynamic Binding: Design a base class shape with two double type values and member functions to input the data and compute_area() for calculating area of shape. Derive two classes: triangle and rectangle. Make compute_area() as abstract function and redefine this function in the derived class to suit their requirements. Write a program that accepts dimensions of triangle/rectangle and display calculated area. Implement dynamic binding for given case study.

Assignment No.5:

Interface: Design and develop a context for given case study and implement an interface for Vehicles Consider the example of vehicles like bicycle, car and bike. All Vehicles have common functionalities such as Gear Change, Speed up and apply breaks. Make an interface and put all these common functionalities. Bicycle, Bike, Car classes should be implemented for all these functionalities in their own class in their own way.

Assignment No.6:

Exception handling: Implement a program to handle Arithmetic exception, Array Index Out of Bounds. The user enters two numbers Num1 and Num2. The division of Num1 and Num2 is displayed. If Num1 and Num2 are not integers, the program would throw a Number Format Exception. If Num2 were zero, the program would throw an Arithmetic Exception. Display the exception.

Assignment No.7:

Template: Implement a generic program using any collection class to count the number of elements in a collection that have a specific property such as even numbers, odd number, prime number and palindromes.

Assignment No.8:

File Handling: Implement a program for maintaining a database of student records using Files.

Student has Student_id, name, Roll_no, Class, marks and address. Display the data for few students. 1. Create Database 2. Display Database 3. Delete Records 4. Update Record 5. Search Record **Assignment No.9:** Using concepts of Object-Oriented programming develop solution for any one application 1) Banking system having following operations : 1. Create an account 2. Deposit money 3. Withdraw money 4. Honor daily withdrawal limit 5. Check the balance 6. Display Account information. 2) Inventory management system having following operations : 1. List of all products 2. Display individual product information 3. Purchase 4. Shipping 5. Balance stock6. Loss and Profit calculation. **Assignment No.10:** Factory Design Pattern: Implement Factory design pattern for the given context. Consider Car building process, which requires many steps from allocating accessories to final makeup. These steps should be written as methods and should be called while creating an instance of a specific car type. Hatchback, Sedan, SUV could be the subclasses of Car class. Car class and its subclasses, CarFactory and Test Factory Pattern should be implemented. **Assignment No.11:** Strategy Design Pattern: Implement and apply Strategy Design pattern for simple Shopping Cart where three payment strategies are used such as Credit Card, PayPal, Bit Coin. Create an interface for strategy pattern and give concrete implementation for payment. Test Book: 1. E. Balagurusamy, "Programming with Java – A Primer", Tata – McGraw-Hill Publication, 4th Edition. 2019 2. Kathy Sierra, "OCA /OCP Java SE 7 Programmer I & II Study Guide" (Exams 1Z0-803 & IZ-804) Oracle Press (2017) 3. Steven Holzner et al. "Java 2 Programming", Black Book, Dreamtech Press, 2009 References 1. H.M. Deitel, P.J. Deitel, "Java - How to Program", PHI Publication, 6th Edition, 2005 2. Bruce Eckel, "Thinking in Java", PHI Publication 3. Poo, Danny, Kiong, Derek, Ashok, Swarnalatha," Object-Oriented Programming and Java", ISBN 978-1-84628-963-7 4. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patterns, Elements of Reusable Object- Oriented Software" ISBN-13: 978-0201633610 5. RohitJoshi, "Java Design patterns, Reusable solutions to common problems" Java Code Geeks

SE (Semester I)

COURSE OUTCOMES

CO No.	Course Outcome	Mapping With Unit/ Assignment	Assessment Technique	Blooms Taxonomy Category
CO214444.1	Differentiate various programming paradigms.	JUC	AX	L2-Understand
CO214444.2	Identify classes, objects, methods, and handle object creation, initialization, and Destruction to model real-world problems.	I, IX	~~0	L2-Understand
CO214444.3	Identify relationship among objects using inheritance and polymorphism principles.	П,Ш,IV,∨	Continuous Assessments	L2-Apply
CO214444.4	Handle different types of exceptions and perform generic programming.	VI,VII	& Mock Test	L3-Apply
CO214444.5	Use of files for real world application.	VIII,IX	2	L2-Apply
CO214444.6	Apply appropriate design patterns to provide object-oriented solutions.	x,xr/D G)9	L3-Apply

PREREQUISITES

Sr No	Title of assignment	Prerequisites
1	Classes and object	Students show know basics of programming language
2	Polymorphism	Students show know basics of programming language
3	Inheritance	Students show know basics of programming language
4	Dynamic Binding	Students show know basics of programming language
5	Interface	Students show know basics of programming language
6	Exception handling	Students show know basics of programming language
7	Template	Students show know basics of programming language
8	File Handling	Students show know basics of programming language
9	Case Study	Students show know basics of programming language
	CI AII	& object oriented concepts
10	Factory Design Pattern	Students show know basics of programming language
		& object oriented concepts
11	Strategy Design Pattern	Students show know basics of programming language
	651	& object oriented concepts

ur

PES's MCOE, Information Technology

大

TEACHING PLAN

TEACHING PLAN SHORT			
Academic Year:- 2021-22 Semester :- I	w. e. f. :- 20/08/2021		
Class : -SE	Division: A/B		
Subject :- Object Oriented Programming Laboratory	Subject Code :- 214448		
Faculty In charge :- Ms. Rajashri Sadafule/Ms.Ashwini	No. of Practical/ weeks: 1		
Bhamre	17.		
Pure stired Plan	<0>		

Practical Plan

Practical 1	Plan		1	\sim
Sr. No.	Assignm ent No.	Unit/ Topic Name	Start Date	End Date
1.	Ι	Design a class 'Complex 'with data members for real and imaginary part. Provide default and Parameterized constructors. Write a program to perform arithmetic operations of two complex numbers.	4 th Week August	4 th Week August
2.	II	Identify commonalities and differences between Publication, Book and Magazine classes. Title, Price, Copies are common instance variables and saleCopy is common method. The differences are, Bookclass has author and orderCopies(). Magazine Class has methods orderQty, Current issue, receiveissue().Write a program to find how many copies of the given books are ordered and display total sale of publication.	1 st Week September	2 nd Week September
3.	III	Design and develop inheritance for a given case study, identify objects and relationships and implement inheritance wherever applicable. Employee class hasEmp_name, Emp_id, Address, Mail_id, and Mobile_noas members. Inherit the classes: Programmer, Team Lead, Assistant Project Manager and Project Manager from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF,	3 rd Week September	3 rd Week September

		0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.		
4.	IV	Design a base class shape with two double type values and member functions to input the data and compute_area() for calculating area of shape. Derive two classes: triangle and rectangle. Make compute_area() as abstract function and redefine this function in the derived class to suit their requirements. Write a program that accepts dimensions of triangle/rectangle and display calculated area. Implement dynamic binding for given case study.	4 th Week September	4 th Week September
5.	V	Design and develop a context for given case study and implement an interface for Vehicles Consider the example of vehicles like bicycle, car and bike. All Vehicles have common functionalities such as Gear Change, Speed up and apply breaks. Make an interface and put all these common functionalities. Bicycle, Bike, Car classes should be implemented for all these functionalities in their own class in their own way.	1 st week October	2 nd week October
6.	VI	Implement a program to handle Arithmetic exception, Array Index Out of Bounds. The user enters two numbers Num1 and Num2. The division of Num1 and Num2 is displayed. If Num1 and Num2 are not integers, the program would throw a Number Format Exception. If Num2 were zero, the program would throw an Arithmetic Exception. Display the exception.	3 rd week October	3 rd week October
7.	VII	Implement a generic program using any collection class to count the number of elements in a collection that have a specific property such as even numbers, odd number, prime number and palindromes.	4 th week October	4 th week October
8.	VIII	Implement a program for maintaining a database of student records using Files. Student has Student_id,name, Roll_no, Class, marks and address. Display the data for few students.	2 nd week November	2 nd week November

		1. Create Database 2. Display Database 3. Delete Records 4. Update Record 5. Search Record		
9.	IX	Using concepts of Object-Oriented programming develop solution for any one application 1) Banking system having following operations : 1. Create an account 2. Deposit money 3. Withdraw money 4. Honor daily withdrawal limit 5. Check the balance 6. Display Account information. 2) Inventory management system having following operations : 1. List of all products 2. Display individual product information 3. Purchase 4. Shipping 5. Balance stock6. Loss and Profit calculation.	3rd week November	3 rd week November
10.	Х	Implement Factory design pattern for the given context. Consider Car building process, which requires many steps from allocating accessories to final makeup. These steps should be written as methods and should be called while creating an instance of a specific car type. Hatchback, Sedan, SUV could be the subclasses of Car class. Car class and its subclasses, CarFactory and Test Factory Pattern should be implemented.	4 th week November	4th week November
11	XI	Implement and apply Strategy Design pattern for simple Shopping Cart where three payment strategies are used such as Credit Card, PayPal, Bit Coin. Create an interface for strategy pattern and give concrete implementation for payment.	1 st week November	1 st week November
_	/	4116		1 mar 1

Modern College of Engineering

PRACTICAL PRACTICE QUESTIONS

Assignment No.1:

Classes and object: Design a class 'Complex 'with data members for real and imaginary part. Provide default and Parameterized constructors. Write a program to perform arithmetic operations of two complex numbers.

Assignment No.2:

Polymorphism: Identify commonalities and differences between Publication, Book and Magazine classes. Title, Price, Copies are common instance variables and saleCopy is common method. The differences are, Bookclass has author and orderCopies(). Magazine Class has methods orderQty, Current issue, receiveissue().Write a program to find how many copies of the given books are ordered and display total sale of publication.

Assignment No.3:

Inheritance: Design and develop inheritance for a given case study, identify objects and relationships and implement inheritance wherever applicable. Employee class hasEmp_name, Emp_id, Address, Mail_id, and Mobile_noas members. Inherit the classes: Programmer, Team Lead, Assistant Project Manager and Project Manager from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.

Assignment No.4:

Dynamic Binding: Design a base class shape with two double type values and member functions to input the data and compute_area() for calculating area of shape. Derive two classes: triangle and rectangle. Make compute_area() as abstract function and redefine this function in the derived class to suit their requirements. Write a program that accepts dimensions of triangle/rectangle and display calculated area. Implement dynamic binding for given case study.

Assignment No.5:

Interface: Design and develop a context for given case study and implement an interface for Vehicles Consider the example of vehicles like bicycle, car and bike. All Vehicles have common functionalities such as Gear Change, Speed up and apply breaks. Make an interface and put all these common functionalities. Bicycle, Bike, Car classes should be implemented for all these functionalities in their own class in their own way.

Assignment No.6:

Exception handling: Implement a program to handle Arithmetic exception, Array Index Out of Bounds. The user enters two numbers Num1 and Num2. The division of Num1 and Num2 is displayed. If Num1 and Num2 are not integers, the program would throw a Number Format Exception. If Num2 were zero, the program would throw an Arithmetic Exception. Display the exception.

Assignment No.7:

Template: Implement a generic program using any collection class to count the number of elements in a collection that have a specific property such as even numbers, odd number, prime number and palindromes.

Assignment No.8:

File Handling: Implement a program for maintaining a database of student records using Files.

Student has Student_id, name, Roll_no, Class, marks and address. Display the data for few students. 1. Create Database 2. Display Database 3. Delete Records 4. Update Record 5. Search Record **Assignment No.9:** Using concepts of Object-Oriented programming develop solution for any one application 1) Banking system having following operations : 1. Create an account 2. Deposit money 3. Withdraw money 4. Honor daily withdrawal limit 5. Check the balance 6. Display Account information. 2) Inventory management system having following operations : 1. List of all products 2. Display individual product information 3. Purchase 4. Shipping 5. Balance stock6. Loss and Profit calculation. **Assignment No.10:** Factory Design Pattern: Implement Factory design pattern for the given context. Consider Car building process, which requires many steps from allocating accessories to final makeup. These steps should be written as methods and should be called while creating an instance of a specific car type. Hatchback, Sedan, SUV could be the subclasses of Car class. Car class and its subclasses, CarFactory and Test Factory Pattern should be implemented. **Assignment No.11:** Strategy Design Pattern: Implement and apply Strategy Design pattern for simple Shopping Cart where three payment strategies are used such as Credit Card, PayPal, Bit Coin. Create an interface for strategy pattern and give concrete implementation for payment. Modern College of Engineering = 🛧 Pune - 5 🛧 =

SE (Semester I)

ORAL QUESTION BANK

Assignment No 1

- 3. Describe benefits of OOP? (BL2)
- 4. Define constructor? (BL1)
- 5. Sketch pictorial representation of object from your program. (BL3)
- 6. Compare class variables and static variables (BL2)
- 7. Explain types of constructor with example. (BL1)
- 8. Discuss use of constructor (BL2)
- 9. Differentiate constructor and destructor. (BL4)
- 10. Define class & object. (BL1)
- 11. What is return type of constructor. (BL1)

Assignment No 2

- 1. Define is polymorphism. (BL1)
- 2. List out polymorphism types. (BL1)
- 3. Differentiate static & runtime polymorphism. (BL4)
- 4. Define method overloading. (BL1)
- 5. Define method overriding. (BL1)
- 6. Differentiate method overloading and method overriding. (BL4)
- 7. Explain superclass & subclass. (BL2)

Assignment No. 3

- 1. Justify inheritance/ class relationship with classes Surgeon and Doctor.
- 2. Explain type of inheritance.
- 3. What is base and child class.
- 4. What is the use of inheritance .
- 5. Explain why multiple inheritance is not supported by Java.
- 6. Compare Composition and Inheritance in OOP.
- 7. Create an abstract class 'Parent' with a method 'message'. It has two subclasses each having a method with the same name 'message' that prints "This is first subclass" and "This is second subclass" respectively. Call the methods 'message' by creating an object for each subclass
- 8. Explain Dynamic Method Dispatch with example.
- 9. Explain Super Keyword in Java.

Assignment No. 4

- 1. Justify inheritance/ class relationship with classes Surgeon and Doctor.
- 2. Explain type of inheritance.
- 3. What is base and child class.
- 4. What is the use of inheritance.
- 5. Explain why multiple inheritance is not supported by Java.
- 6. Compare Composition and Inheritance in OOP.
- 7. Create an abstract class 'Parent' with a method 'message'. It has two subclasses each having a method with the same name 'message' that prints "This is first subclass" and "This is second subclass" respectively. Call the methods 'message' by creating an object for each subclass
- 8. Explain Dynamic Method Dispatch with example.
- 9. Explain Super Keyword in Java.

Assignment No. 5

- Write a java interface which provides the implementation of Bank interface to calculate Rate of Interest.
- 2. Explain interface.
- 3. What is the use of interface.
- Write a Drawable interface has only one methoddraw(). Its implementation is provided by Rectangle and Circle classes
- 5. A class implements an interface, but one interface extends another interface.
- 6. Create a vehicles as interface mention all common functionalities and create classes like bicycle, car, bike implement all these functionalities in their own class in their own way.
- **7.** Create a animal class using interface and provide some common functionalities and implement into some other classes.
- 8. How would you use interfaces ?Give One Example.
- 9. Can we declare an Interface with "abstract" keyword?
- 10. Can we override an interface method with visibility other than public?

- 11. What are marker interfaces? What is the use of marker interfaces?
- 12. Write down Syntax to declare Interface.

Assignment 6

- 1. Design one login page and ask user to enter user id and password. If one of the field is empty generate null pointer exception.
- 2. Write a method to process only text file, so we can provide caller with appropriate error code when some other type of file is sent as input.
- 3. Write a bank class if user will provide account number which is greater than specified size then method will produce array out of bound exception.
- 4. What is an exception?
- 5. How the exceptions are handled in java? OR Explain exception handling mechanism in java?
- 6. What is the difference between error and exception in java?
- 7. Can we keep other statements in between try, catch and finally blocks?
- 8. There are three statements in a try block statement1, statement2 and statement3. After that there is a catch block to catch the exceptions occurred in the try block. Assume that exception has occurred in statement2. Does statement3 get executed or not?
- 9. What are run time exceptions in java. Give example?
- 10. What is the difference between ClassNotFoundException and NoClassDefFoundError in java?

Pune - 5 🛪

- 11. Does finally block get executed If either try or catch blocks are returning the control?
- 12. Can we throw an exception manually? If yes, how?
- 13. What is the difference between final, finally and finalize in java?
- 14. What is the difference between throw, throws and throwable in java?

Assignment No. 7

- 1. What Is a Generic Type Parameter
- 2. What Are Some Advantages of Using Generic Types?
- 3. How Does a Generic Method Differ from a Generic Type?
- 4. What Is Type Inference?

- 5. What Is a Wildcard Type?
- 6. How does the compiler translate Java generics?
- 7. What is type erasure?
- 8. Is generic code faster or slower than non generic code?
- 9. Parameterized type bounds?

Assignment No 8

- 1. Give the basic methods in File class?
- 2. Why to use FileWriter class and give its advantages .
- 3. Write a File-Copy program which copies the content of one file to another. Take both the file names from the user

ATT

- 4. How to read data from a file ,using FileReader class?
- 5. Give usage of BufferedWriter and BufferedReader classes in Java with example
- 6. Write a code to generate database for Criket player ising file handling operations
- 7. What is the difference between InputStream and OutputStream in Java?
- 8. What is the difference between BufferedReader and Scanner in Java?
- 9. What is the file descriptor?
- 10. How do you check the permission of a file or directory in Java?
- 11. When does java.io.FileNotFoundException: (Access is denied) comes? How do you fix that?

Assignment No 9

- 1. List the features which are used for application development
- 2. How the polymorphism applied
- 3. Can we apply interface or abstract class in given case study ? How.
- 4. Did the application takes care of garbage collection
- 5. Have you applied user defined exceptions in given case study ? Give examples .
- 6. How many objects are created and how they are stored in memory

Assignment No 10

- 1. Give the applications where design patterns can be applied ?
- 2. Why factory pattern?

- 3. Explain factory pattern?
- 4. Draw the design Pattern with a context.
- 5. Give examples of creational design pattern .
- 6. Design application by applying the factory pattern .
- 7. Represent and implement a *Shape* interface which implements Circle ,Square, rectangle using Fatory pattern
- 8. Represent and implement for bill generation using GetPlanFactory to get a Plan object. Pass information (Domestic / commercial/ institutional) to get the type of object it needs.

Assignment No 10

- 1. Give intents of Strategy Design pattern
- 2. How problems can be designed and solved using design pattern
- 3. Represent Solution of real world problem using Strategy design pattern
- 4. Give Real-World Analogy of strategy design pattern .
- 5. Design application by applying the Strategy design pattern.
- 6. Represent and implement Strategy design pattern to perform mathematical operations such as add,sub,mul,div
- 7. Represent and implement Strategy design pattern for sorting operation such as Quick sort ,Merge sort etc.
- 8. Represent and implement Strategy design pattern for searching techniques such as Sequential Search, Binary Search etc.

Modern College of Engineering

SE (Semester I)

ADDITIONAL RESOURCES

https://www.youtube.com/watch?v=7WhnYwoBY24&list=PLlhM4lkb2sEhf5NlWeYh_gdcN49pHjVP0 https://www.youtube.com/watch?v=Imy9TEJkKa8&list=PLlhM4lkb2sEhf5NlWeYh_gdcN49pHjVP0&inde x=2

https://www.youtube.com/watch?v=qG4zIEjYz7I&list=PLIhM4lkb2sEhf5NIWeYh_gdcN49pHjVP0&index= 3

https://www.youtube.com/watch?v=9nRblRcb35Y&list=PLlhM4lkb2sEhf5NlWeYh_gdcN49pHjVP0&inde x=4

https://www.youtube.com/watch?v=Ztu1EPdlg&list=PLlhM4lkb2sEhf5NIWeYh_gdcN49pHjVP0&index=5

https://www.youtube.com/watch?v=KELJ2kD6aeU&list=PLlhM4lkb2sEhf5NlWeYh_gdcN49pHjVP0&inde x=6

https://www.youtube.com/watch?v=xnh7ip5gpzc&list=PLfVsf4Bjg79DLA5K3GLbIwf3baNVFO2Lq

SE (Semester I)

SYLLABUS

214449: Soft Skill Lab

Teaching Scheme:	Credits Scheme:	Examination Scheme:
Practical (PR) :2 Hours/Week	01	TW: 25 Marks
	त्रमया क्षेत्र	

UNIT I: Introspective & Self Development (04 Hours)

Introduction to soft skills, SWOC analysis, planning career, setting short-term & long-term goals, identifying difference between jobs & career, aligning aspirations with individual skills, understanding self-esteem, developing discipline and critically evaluating oneself.

UNIT II: Communication Skills (04 Hours)

Essentiality of good communication skills, importance of feedback, different types of communication, barriers in communication and how to overcome these barriers, significance of non-verbal messages as augmentation to verbal communication, group discussion, listening vs hearing, reading to comprehend, learning to skim and scan to extract relevant information, effective digital communication.

UNIT III: Language and Writing Skills (04 Hours)

Fundamentals of English grammar, improve lexical resource, essential steps to improve spoken and written English, business vocabulary, writing – email, resume, formal letter, official communication, essay, presentation – planning, organizing, preparing and delivering professional presentation.

UNIT IV: Leadership Skills and Group Dynamics (04 Hours)

Understanding corporate culture and leadership skills, difference between a leader and a manager, importance of resilience in a professional surrounding, developing empathy and emotional intelligence, being assertive and confident, 4-Ds of decision making, creative and solution-centric thinking, resolving conflicts, working cohesively as a team to achieve success, five qualities of an effective team – positivity, respect for others, trust, goal-focused, supportiveness.

UNIT V: Ethics, Professional Etiquette (04 Hours)

Understanding ethics and morals, importance of professional ethics, hindrances due to absence of work ethics, professional etiquette – introductions, with colleagues, attire, events, dinning, telephone, travelling, netiquette, social media, writing.

UNIT VI: Stress and Time Management (04 Hours)

Stress as integral part of life, identifying signs and sources of stress, steps to cope with stress – open communication, positive thinking, belief in oneself, ability to handle failure, retrospective thinking for future learning, organizing skills to enhance time management, focusing on goals, smart work vs hard work, prioritizing activities, perils of procrastination, daily evaluation of "to-do" list.

Text Book:

 Gajendra Singh Chauhan, Sangeeta Sharma, "Soft Skills – An Integrated Approach to Maximize Personality", WILEY INDIA, ISBN:13:9788126556397.

Reference Books:

- 1. Indrajit Bhattacharya, "An Approach to Communication Skills", Delhi, DhanpatRai, 2008
- Simon Sweeney, "English for Business Communication", Cambridge University Press, ISBN 13:978-0521754507
- Sanjay Kumar and Pushpa Lata, "Communication Skills", Oxford University Press, ISBN 10:9780199457069
- Atkinson and Hilgard, "Introduction to Psychology", 14th Edition, Geoffrey Loftus, ISBN-10:0155050699, 2003
- 4. Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts, 2004, ISBN 10:1591392993
- 6. Krishnaswami, N. and Sriraman T., "Creative English for Communication", Macmillan

RECOMMENDED LIST OF LAB SESSIONS

1. Introduction of Self / SWOC Analysis

a. Explain how to introduce oneself in a professional manner and presenting oneself positively

Name, Academic Profile, Achievements, Career Aspirations, Personal Information (hobbies, family, social).

b. Focus on introspection and become aware of one's Strengths, Weakness, Opportunities and Challenges.

Students can write down their SWOC in a matrix and the teacher can discuss the gist personally.

2. Career Goals and Planning

a. Make students understand the difference between a job and a career. Elaborate steps on how to plan a career.

Students can choose a career and they should write down what skills, knowledge, steps are need to be successful in that particular career and how they can get the right opportunity.

b. Explain to students how to plan short term and long-term goals.

Think and write down their short-term goals and long terms goals. Teacher can read and discuss (provide basic counselling) about the choices written.

3. Public Speaking (Choose any 2)

a. Prepared Speech

Topics will be shared with students and they will be given 10 minutes to prepare and 3 minutes to deliver followed by Q&A from audience. Teacher will evaluate each student based on content, communication skills, logical and cohesive presentation of topic, perspective of student, ability to handle questions and respond positively.

b. Extempore Speech

Various topics will be laid out in front of the audience and each student is to pick one topic and speak about the topic for 5 minutes followed by Q&A from audience. Teacher will evaluate each student based on ability to think on his/her feet, content, communication skills, logical and cohesive presentation of topic, perspective of student, ability to handle questions and respond positively.

c. Reviewing an Editorial article

Either using e-paper / printed copy, students have to select a recent editorial (that is noncontroversial), read it and explain to the audience what the editor's perspective is and what the student's perspective is.

d. Book Review

Each student will orally present to the audience his/her review of a book that he/she has recently read.

4. Group Discussion

a. The class will be divided into groups of 8 – 10 students in for a discussion lasting 10 minutes.
b. Topics should be topical and non-controversial. After each group finishes its discussion, the teacher will give critical feedback including areas of improvement. The teacher should act as a moderator / observer only.

5. Listening and Reading Skills

a. Listening Worksheets to be distributed among students

Each student will be given specifically designed worksheets that contain blanks / matching / MCQs that are designed to an audio (chosen by the faculty). Students have to listen to the audio (only once) and complete the worksheet as the audio plays. This will help reiterate active listening as well as deriving information (listening to information between the lines) **b.** Reading Comprehension Worksheets to be distributed/displayed to students

Teacher will choose reading passages from non-technical domains, design worksheets with questions for students to answer. This will enhance student's reading skills by learning how to skim and scan for information.

6. Writing Skills (Choose any 2)

a. Letter / Email Writing

After explaining to the students, the highlights of effective writing, students can be asked to write (using digital platforms / paper-based) letter to an organization with the following subject matter,

i. Requesting opportunity to present his/her product.

ii. Complaining about a faulty product / service.

iii. Apologizing on behalf of one's team for the error that occurred.

iv. Providing explanation for a false accusation by a client.

b. Report Writing

After describing various formats to write report and explaining how to write a report, each student should be asked to write a report (digital/ paper-based) on any of the following topics,

- i. Industrial visit.
- ii. Project participated in.

iii. Business / Research Proposal.

c. Resume Writing

The teacher should conduct a brief session outlining the importance of a CV / Resume and students can write / type out their own resumes

i. Share various professional formats.

ii. Focus on highlighting individual strengths.

iii. Develop personalized professional goals / statement at the beginning of the resume.

7. Team Building Activities

The class will be divided into groups of 4-5 students in each group and an activity will be given to each group.

The activities chosen for each team should be competitive and should involve every student in the team. The activities may be conducted indoors or outdoors depending on infrastructure. While selecting the team, ensure that each team has a mix of students who have varied skills. The teacher should give critical feedback including areas of improvement at the end of the activity.

8. Expert Lecture

Highlighting the need to manage stress and time, experts from the fields of health and fitness, counselling, training, medical or corporate HR may be invited to deliver a participatory session that focus on helping students to cope with parental, social, peer and career pressures.

9. Lateral and Creative Thinking

Every student needs to step out of the linear thinking and develop lateral and creative thinking. Teacher can develop creative activities in the classroom / lab that will help students enhance their creative thinking. Some of the suggested activities,

i. Each group (3-4 students) can be given random unrelated items and they will be given sufficient time to come up with creative ideas on how the objects can be used for activities / purposes other than its intended one.

ii. Each student is given a random line and he/she has to spin a fictional story and tell it to the class (3 minutes). Each story should have a beginning, middle and end.

iii. Each group (3-4 students) can be given a fictional / hypothetical dangerous situation and they have to find a solution to that problem. They can present it to the other teams who will then get the opportunity to pick flaws in the ideas.

10. Mock Interviews

Student has to undergo interview session and the teacher should seek the assistance of another faculty member / TPO Officer/ Alumni to act as interview panel. Students will be informed beforehand about the job profile that they are appearing the interview for and they have to come prepared with a printed copy of their resume, formally dressed. Questions will include technical as well as HR. Interviewer can choose to give problems to solve using technical skills. Students will be graded on the basis of their technical knowledge, ability to answer questions well, presentation of self, body language and verbal skills.

11. Presentation Skills

Every student will have to choose a topic of his/her choice and make a 5-minute presentation using audio-video aids / PPT. The topic can either be technical or non-technical. Focus and evaluation of each presentation should be the depth of knowledge about the topic, originality of perspective on the topic, well-researched or not, verbal and non-verbal skills and ability to answer questions effectively. Plagiarism should be discredit and students should be instructed about it.

12. Corporate and Business Etiquette

The teacher can design an interactive session that allows students to be involved in understanding the requirements of a corporate environment. This can be done using innovative quiz competition in the classroom and the teacher explaining the concept / relevance of that particular aspect in the professional context. Alternatively, the teacher can invite professionals to have an interactive session with students about various aspects of professional etiquette.
SE (Semester I)

COURSE OUTCOMES

CO No.	Course Outcome	Mapping With Unit/ Assignment	Assessment Technique	Blooms Taxonomy Category
CO214449.1	Introspect about individual's	1,2,9,12		L4: Analyzing
	goals, aspirations by evaluating		1 1,7	L5: Evaluating
	one's SWOC and think creatively.		~~~~//	5
CO214449.2	Develop effective communication	3,4,5,6,10,11	12	L3: Applying
	skills including Listening, Reading,		122	
	Writing and Speaking.		~ 0	
CO214449.3	Constructively participate in	3,4,7,10,11	~~~~	L3: Applying
	group discussion, meetings and		10	\sim
- 14	prepare and deliver		N	10.
12	Presentations.		Mock Oral	0'\
CO214449.4	Write precise briefs or reports	1,2,7,8,9,12	Examination and	L5: Evaluating
100	and technical documents.		Continuous	121
CO214449.5	Practice professional etiquette,	12	Accossmont	L3: Applying
	present oneself confidently and		Assessment	The second secon
12	successfully handle personal		-	1111
	interviews.		102	1-1
CO214449.6	Function effectively in multi-	7.0	17 .	L4: Analyzing
1	disciplinary and heterogeneous	محسل	/ /	5/
	teams through the knowledge of			/
\	team work, Inter-personal	~		
· · · · · ·	relationships, conflict		1	
	management and leadership		/ * ·	/
	quality		e/	
June - 3				
Modern College of Engineering				
		1e - 5 🛪		

PREREQUISITES

Sr. No.	Unit Number	Prerequisite subject name
1.	2121	Basic knowledge of English Language
2.	VI-E	Basic knowledge of English Language
3.	STE S	Basic knowledge of English Language
4.	IV	Basic knowledge of English Language
5.0	V	Basic knowledge of English Language
6.	VI	Basic knowledge of English Language
PROCR	× Pi	I Book F
Mod	ern Coll	eae of Enaineerina
		Duna . 5 de
		rune-a s

SE (Semester I)

TEACHING PLAN

Teaching Plan Short

Semester :- I

w. e. f. :- 5-7-2021 Division: A/B <u>Subject Code</u> :- 214449

Academic Year:- 2021-22 Class : - S.E

Subject :- Soft Skill Lab

Faculty In charge :- : Mrs. Suhasini L. Bhat,

Ms. Poonam Rakibe, Ms. Ashwini Bhamare

• Practical Plan

No. of Practical/ weeks: 2 Hour

Assignment	Assignment Title	Start	End
No.	Assignment fille	Start	LIIG
1	Interaction With Students, Introduction of Soft Skills Lab and Communication Skills, Introduction of Self / SWOC Analysis	August 3 rd Week	August 4 th Week
2	Career Goals and Planning	August 5 th Week	September 1 st Week
3	Public Speaking	September 2 nd Week	September 2 nd Week
4	Group Discussion	September 3 rd Week	September 3 rd Week
5	Listening and Reading Skills	September 4 th Week	September 4 th Week
6	Writing Skills	September 4 th Week	September 4 th Week
7	Team Building	September 5 th Week	October 1 st Week
8	Stress Management	October 2 nd Week	October 2 nd Week
9	Lateral and Creative Thinking	October 2 nd Week	October 2 nd Week
10	Mock Interviews	October 3 rd Week	October 4 th Week
11	Presentation Skills	October 5 th Week	November 1 st Week
12	Corporate and Business Etiquette	November 2 nd Week	November 2 nd Week

ORAL QUESTION BANK

Assignment No. 1

Q.No.	Question
Q1	Tell me something about yourself.
Q2	What is Communication Skill?
Q3	What is Soft Skill?
Q4	What is the difference between Communication Skill and Soft Skill?
Q5	What is SWOC analysis?
Q6	What is your Strength?
Q7	What is your Weakness?
Q8	What is the need of SWOC analysis?
Q9	How do you write a good SWOC analysis?
Q10	What are the examples of Opportunities in your field?
Q11	What are the examples of Challenges in your field?
Q12	Who will do SWOC analysis?
/	Assignment No. 2

Assignment No. 2

Q. No.	Question
Q1	What is Career?
Q2	What is the best Career decision you have ever made?
Q3	How do you organise your Time?
Q4	What is the difference between Career and Job?
Q5	List few examples of Career.
Q6	What is Goal and why is it important?
Q7	What is Short Term Goal?
Q8	What is Long Term Goal?

Q9	What is the difference between Short- and Long-Term Goals?
Q10	What are the steps involved in creating a Career Plan?
Q11	What are your Goals in Life?
Q12	What does a Job mean to Employee?

Accignment No.2			
Assignment No. 5			
Ο Νο	EPOUestion		
Q1	What is Public Speaking?		
Q2	What is the importance of Public Speaking?		
Q3	What are the different types of Public Speaking?		
Q4	List some qualities of good Speaker.		
Q5	What is the purpose of Public Speaking?		
Q6	What are the benefits of Public Speaking?		
Q7	List some of the elements of Public Speaking.		
Q8	How to improve Public Speaking?		
Q9	What is Voice Modulation?		
Q10	What are the tips for Public Speaking?		
Q11	List few elements of Voice Modulation.		
Q12	What is the role of Voice Modulation in Communication?		
signment No. 4			

signment No. 4

É.

Q. No	Question
Q1	What is Group Discussion?
Q2	What is the importance of Group Discussion?
Q3	What are the rules for Group Discussion?
Q4	What are the do's and don'ts of Group Discussion?
Q5	What should be avoided in Group Discussion?
Q6	What are the benefits of Group Discussion?

Q7	What are the characteristics of successful Group Discussion?
Q8	What are the two most important skills required in the GD?
Q9	What is group discussion in soft skills?
Q10	Is group discussion important during interviews?
Q11	Who holds a Group Discussion?
Q12	Why is a "Group Discussion" conducted?

Q. No.	Question
Q1	What are the 7 strategies of reading?
Q2	What are the methods of teaching reading skills?
Q3	What are different reading skills?
Q4	What are the 3 basic skills of listening?
Q5	How do you test listening skills?
Q6	What are 4 types of listening?
Q7	What are the importance of listening skills?
Q8	What distinguishes listening from hearing?
Q9	How can you communicate non-verbally that you are listening?
Q10	What are strategies that help hold your listeners' attention during your speech?
Q11	What are some benefits for you personally from effective listening
Q12	What does an effective listener do with the extra thought process time while a speaker
	is speaking only 150 words-per-minute?

Assignment No. 6

Q.No.		Question
Q1	What skills are needed for writing?	

Q2	What are the basics of writing?
Q3	How one can improve on writing skills?
Q4	What is effective writing skills?
Q5	What are the 7 types of writing?
Q6	What are the different types of creative writing?
Q7	Why are writing skills tested?
Q8	What are examples of writing skills?
Q9	How can we testour writing skills?
Q10	1.57
	What are the four key components writing tests?
Q11	The row Via
	What are the good writing skills?
Q12	What are the types of written test?
	Assignment No. 7

Assig	gnme	ent l	No.	7
c	,			

Q. No.	Question
Q1	What Is Team Building?
Q2	How Does Team Building Work
Q3	What is the main purpose of team building?
Q4	What are the 5 stages of team building?
Q5	What is team building and why is it important?
Q6	What are Types of team building?
Q7	What are the 4 concepts of team building constitutes?
Q8	What are 3 types of team building?
Q9	List 10 of the best team building activities.
Q10	How do you create a team bond?
Q11	Why are team building activities for work important?

Q. No.	Question
Q1	How do we manage stress?
Q2	What are the main causes of stress?
Q3	What are 5 ways to relieve stress?
Q4	What is the best medicine for stress?
Q5	What is the best medicine for stress?
Q6	What can I drink to relieve stress?
Q7	What is the 3 3 3 rule for anxiety?
Q8	Which fruit is good for anxiety?
Q9	What foods are bad for anxiety?
Q10	What is the 3% rule?
Q11	Does drinking milk reduce stress?
Q12	How can I relax my brain?

Q. No.	Question
Q1	What is Lateral thinking and creative thinking?
Q2	How is Lateral thinking and creativity is related?
Q3	How lateral thinking is used in our daily life?
Q4	What are the techniques of Lateral thinking?
Q5	How is lateral thinking possible in workplace?
Q6	How lateral thinking will be useful in problem solving?
Q7	Why are recruiters asking about your ability to solve a problem using lateral
	thinking?
Q8	Solve following sample puzzles on Lateral thinking :

10

	P1: Someone falls out of a thirty story building, but lives. With luck and their landing
	pad not being factors, how could they have survived the fall?
Q9	P2: A man lives on the tenth floor of a building. Every day he takes the elevator to
	go down to the ground floor to go to work or to go shopping. When he returns he
	takes the elevator to the seventh floor and walks up the stairs to reach his
	apartment on the tenth floor. He hates walking so why does he do it?
Q10	P3: A man is lying dead in a field. Next to him there is an unopened package. There
	is no other creature in the field. How did he die?
Q11	P4: A man walks into a bar and asks the barman for a glass of water. The barman
	pulls out a gun and points it at the man. The man says 'Thank you' and walks out.
Q12	P4: Woman had two sons. They were born at the same hour on the same day of
- [4	the same month in the same year. However, they were not twins. How could this
10	be?
0	Assignment No. 10

Aggion	nont No	- 17
ASSI2III	пені то	. 14

	Assignment No. 10
Q. No.	Question
Q1	What is a Mock Interview?
Q2	What preparation will you do for the mock interview?
Q3	What is the importance of body language during interview?
Q4	How to dress for job interview?
Q5	How will you explain Your Greatest Strengths?
Q6	What Do You Consider to Be Your Weaknesses?
Q7	How can you introduce yourself during interview?
Q8	Why Do You Want to Work at This Company?
Q9	Why Should We Hire You?
Q10	What motivates you?
Q11	What have you learned from your mistakes?

Q12	Why did you decide to pursue a career in this field/industry?
-----	---

Q. No.	Question
Q1	How do you prepare before delivering a presentation?
Q2	What tools do you use to create a presentation? (e.g. Powerpoint, SlideShare, <u>Canva</u>)
Q3	What do you mean by good presentation?
Q4	What skills do you need for presentation?
Q5	Describe a memorable presentation you've attended. What made it successful? (e.g.
	interesting topic, visual aids, entertaining speaker)
Q6	What are the techniques of effective presentation?
Q7	What are 10 elements of a powerful presentation?
Q8	Which of these must be avoided in any presentation?
Q9	How do you modify your presentations for different audiences?
Q10	What makes a good presenter?
Q11	What would you do if you noticed that your audience looked bored during a
	presentation?
Q12	When is it appropriate for speakers to use humor?

Assignment No. 12

×

Q. No.	Question
Q1	What are types of etiquette?
Q2	What are the 3 etiquette rules?
Q3	What are the types of corporate etiquette?
Q4	What is business etiquette and corporate grooming?
Q5	What are 5 basics of business etiquette?

Q6	What are 5 inappropriate etiquette practices in business?
Q7	What is corporate etiquette and what is the importance of corporate etiquette?
Q8	What are the four areas covered by business etiquette?
Q9	How does one say "No" without sounding rude and offensive?
Q10	Is it a good idea to add my colleagues to my social networking sites?Explain.
Q11	Why Is Business Etiquette Important In The Workplace?
Q12	What Is Business Netiquette? Why Is Netiquette Important And Give Examples?

